Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132494, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683345

RESUMEN

Fast pyrolysis is commonly used in industrial reactors to convert waste tires into fine chemicals and fuels. However, current thermogravimetric analyzers are facing limitations that prevent the acquisition of kinetic information. To better understand the reaction kinetics, we designed a novel thermo-balance device that was capable of in-situ weight measurement during rapid heating. The results showed that the reaction rate substantially increased, with significant reductions in reaction time and apparent activation energy compared to slow pyrolysis. The change of reaction mechanism from the reaction order model to the nucleation and growth model was responsible for the increase in the degradation rate. Fast pyrolysis led to the generation of more trimers of isoprene as primary pyrolytic volatiles, which we further supported through density functional theory calculations. The findings suggested that fast pyrolysis has a higher chance of overcoming the high energy barrier to form trimers of isoprene. This comprehensive and in-depth understanding of fast pyrolysis kinetics and product distribution could reveal a more realistic process of waste pyrolysis, which benefited the industry.

2.
Chemosphere ; 289: 133009, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34808201

RESUMEN

The research on preparing high-quality pellets by combining torrefaction and densification of biomass has received widespread attention. This paper investigated the influence of torrefaction temperature on biomass and evaluated the quality of three kinds of pellets (raw pellets, ex-situ torrefied densified pellets and in-situ torrefied densified pellets). When the torrefaction temperature was raised to 300 °C, the energy yield of rice straw (RS) and rice husk (RH) quickly decreased to 71.08% and 77.62%, and the cellulose was decomposed significantly. The results proved that 250 °C was an optimum temperature for RS and RH torrefaction. The densities of RS and RH in-situ torrefied densified pellets were 1236.84 kg/m3 and 1277.50 kg/m3 under 150 MPa, respectively. The density, Meyer hardness, hydrophobicity, and mechanical specific energy consumption of the pellet increased with the increase of molding pressure. The in-situ pellets had higher Meyer hardness, hydrophobicity, and lower mechanical specific energy consumption under the same molding pressure than raw pellets and ex-situ torrefied densified pellets. In addition, the bonding mechanism was studied by using scanning electron microscopy and ultraviolet auto-fluorescence. In-situ torrefaction and densification facilitated the formation of self-locking and the migration of lignin between particles. Compared with RH pellets, RS pellets had higher quality due to the higher hemicellulose content, which was necessary for forming stable hydrogen bonds.


Asunto(s)
Oryza , Biomasa , Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA