Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant J ; 91(6): 1051-1063, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28671744

RESUMEN

In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two-celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage.


Asunto(s)
Tipificación del Cuerpo , Magnoliopsida/embriología , Diferenciación Celular , División Celular , Linaje de la Célula , Magnoliopsida/citología , Magnoliopsida/genética , Semillas/citología , Semillas/embriología , Semillas/genética , Nicotiana/citología , Nicotiana/embriología , Nicotiana/genética , Cigoto
2.
J Exp Bot ; 67(18): 5349-5362, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497286

RESUMEN

Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner.


Asunto(s)
Genes de Plantas/fisiología , Metiltransferasas/fisiología , Oryza/enzimología , Pectinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Genes de Plantas/genética , Metiltransferasas/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Genome Biol ; 25(1): 234, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210441

RESUMEN

BACKGROUND: UV-B, an important environmental factor, has been shown to affect the yield and quality of rice (Oryza sativa) worldwide. However, the molecular mechanisms underlying the response to UV-B stress remain elusive in rice. RESULTS: We perform comprehensive metabolic profiling of leaves from 160 diverse rice accessions under UV-B and normal light conditions using a widely targeted metabolomics approach. Our results reveal substantial differences in metabolite accumulation between the two major rice subspecies indica and japonica, especially after UV-B treatment, implying the possible role and mechanism of metabolome changes in subspecies differentiation and the stress response. We next conduct a transcriptome analysis from four representative rice varieties under UV-B stress, revealing genes from amino acid and flavonoid pathways involved in the UV-B response. We further perform a metabolite-based genome-wide association study (mGWAS), which reveals 3307 distinct loci under UV-B stress. Identification and functional validation of candidate genes show that OsMYB44 regulates tryptamine accumulation to mediate UV-B tolerance, while OsUVR8 interacts with OsMYB110 to promote flavonoid accumulation and UV-B tolerance in a coordinated manner. Additionally, haplotype analysis suggests that natural variation of OsUVR8groupA contributes to UV-B resistance in rice. CONCLUSIONS: Our study reveals the complex biochemical and genetic foundations that govern the metabolite dynamics underlying the response, tolerance, and adaptive strategies of rice to UV-B stress. These findings provide new insights into the biochemical and genetic basis of the metabolome underlying the crop response, tolerance, and adaptation to UV-B stress.


Asunto(s)
Oryza , Rayos Ultravioleta , Oryza/genética , Oryza/metabolismo , Oryza/efectos de la radiación , Metaboloma , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Flavonoides/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Transcriptoma
4.
Plant J ; 65(1): 131-145, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21175896

RESUMEN

The maternal-to-zygotic transition (MZT) is characterized by the turnover of zygote development from maternal to zygotic control, and has been extensively studied in animals. A majority of studies have suggested that early embryogenesis is maternally controlled and that the zygotic genome remains transcriptionally inactive prior to the MZT. However, little is known about the MZT in higher plants, and its timing and impact remain uncharacterized. Here, we constructed cDNA libraries from tobacco (Nicotiana tabacum) egg cells, zygotes and two-celled embryos for gene expression profiling analysis, followed by RT-PCR confirmation. These analyses, together with experiments using zygote microculture coupled with transcription inhibition, revealed that a marked change in transcript profiles occurs approximately 50 h after fertilization, and that the MZT is initiated prior to zygotic division in tobacco. Although maternal transcripts deposited in egg cells support several early developmental processes, they appear to be insufficient for zygotic polar growth and subsequent cell divisions. Thus, we propose that de novo transcripts are probably required to trigger embryogenesis in later zygotes in tobacco.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/embriología , Cigoto/citología , ADN Complementario/genética , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/citología
5.
Sci China Life Sci ; 65(7): 1380-1394, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35079956

RESUMEN

Plants produce specialized metabolites to adapt to the ever-changing environments. Flavonoids are antioxidants essential for growth, development, and breeding with increased stress resistance in crops. However, the mechanism of the involvement of flavonoids in ultraviolet-B (UV-B) stress in rice (Oryza sativa) is largely unknown. In this study, we cloned and functionally identified a receptor-like kinase (OsRLCK160) and a bZIP transcription factor (OsbZIP48) positively regulating flavonoid accumulation through metabolite-based genome-wide association study of the flavonoid content in rice. Meanwhile, OsRLCK160 interacted with and phosphorylated OsbZIP48 to regulate the flavonoid accumulation and participate in UV-B tolerance in rice. Our study indicates the importance of applying OsRLCK160 and OsbZIP48 to advance the fundamental understanding of stable rice production and breed UV-B-tolerant rice varieties, which may contribute to breeding high-yield rice varieties.


Asunto(s)
Oryza , Flavonoides/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento
6.
Mol Plant ; 15(2): 258-275, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34715392

RESUMEN

As one of the most important crops in the world, rice (Oryza sativa) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the changes in metabolite abundance across the entire life cycle have not yet been determined. In this study, combining both targeted and nontargeted metabolite profiling methods, a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle. The contents of metabolites in different tissues of rice were significantly different, with various metabolites accumulating in the plumule and radicle during seed germination. Combining these data with transcriptome data obtained from the same time period, we constructed the Rice Metabolic Regulation Network. The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across development. Using this dataset, we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity. This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agronomic traits.


Asunto(s)
Oryza , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Estadios del Ciclo de Vida , Metaboloma/genética , Oryza/metabolismo , Transcriptoma/genética
7.
Metabolites ; 11(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34940638

RESUMEN

The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine-asparagine-polyamine module and the shikimic acid-tyrosine-tryptamine-phenylalanine-flavonoid module. As the core member of the second module, shikimic acid's function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research.

8.
Sci China Life Sci ; 63(7): 1037-1052, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32112268

RESUMEN

Although natural variations in rice flavonoids exist, and biochemical characterization of a few flavonoid glycosyltransferases has been reported, few studies focused on natural variations in tricin-lignan-glycosides and their underlying genetic basis. In this study, we carried out metabolic profiling of tricin-lignan-glycosides and identified a major quantitative gene annotated as a UDP-dependent glycosyltransferase OsUGT706C2 by metabolite-based genome-wide association analysis. The putative flavonoid glycosyltransferase OsUGT706C2 was characterized as a flavonoid 7-O-glycosyltransferas in vitro and in vivo. Although the in vitro enzyme activity of OsUGT706C2 was similar to that of OsUGT706D1, the expression pattern and induced expression profile of OsUGT706C2 were very different from those of OsUGT706D1. Besides, OsUGT706C2 was specifically induced by UV-B. Constitutive expression of OsUGT706C2 in rice may modulate phenylpropanoid metabolism at both the transcript and metabolite levels. Furthermore, overexpressing OsUGT706C2 can enhance UV-B tolerance by promoting ROS scavenging in rice. Our findings might make it possible to use the glycosyltransferase OsUGT706C2 for crop improvement with respect to UV-B adaptation and/or flavonoid accumulation, which may contribute to stable yield.


Asunto(s)
Flavonoides/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/efectos de la radiación , Oryza/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Adaptación Fisiológica , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/efectos de la radiación , Estudio de Asociación del Genoma Completo , Glicósidos/metabolismo , Lignanos/metabolismo , Metaboloma/efectos de la radiación , Mutación
9.
Nat Plants ; 6(12): 1447-1454, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299150

RESUMEN

Diterpenoids are the major group of antimicrobial phytoalexins in rice1,2. Here, we report the discovery of a rice diterpenoid gene cluster on chromosome 7 (DGC7) encoding the entire biosynthetic pathway to 5,10-diketo-casbene, a member of the monocyclic casbene-derived diterpenoids. We revealed that DGC7 is regulated directly by JMJ705 through methyl jasmonate-mediated epigenetic control3. Functional characterization of pathway genes revealed OsCYP71Z21 to encode a casbene C10 oxidase, sought after for the biosynthesis of an array of medicinally important diterpenoids. We further show that DGC7 arose relatively recently in the Oryza genus, and that it was partly formed in Oryza rufipogon and positively selected for in japonica during domestication. Casbene-synthesizing enzymes that are functionally equivalent to OsTPS28 are present in several species of Euphorbiaceae but gene tree analysis shows that these and other casbene-modifying enzymes have evolved independently. As such, combining casbene-modifying enzymes from these different families of plants may prove effective in producing a diverse array of bioactive diterpenoid natural products.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Diterpenos/metabolismo , Oryza/genética , Oryza/metabolismo , China , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
10.
FEBS Lett ; 580(7): 1747-52, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-16510144

RESUMEN

We applied suppression subtractive hybridization and mirror orientation selection to compare gene expression profiles of isolated Nicotiana tabacum cv SR1 zygotes and egg cells. Our results revealed that many differentially expressed genes in zygotes were transcribed de novo after fertilization. Some of these genes are critical to zygote polarity and pattern formation during early embryogenesis. This suggests that the transcriptome is restructed in zygote and that the maternal-to-zygotic transition happens before the first zygotic division, which is much earlier in higher plants than in animals. The expressed sequence tags used in this study provide a valuable resource for future research on fertilization and early embryogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Transcripción Genética , Cigoto , Tipificación del Cuerpo , División Celular , Polaridad Celular , Desarrollo Embrionario , Etiquetas de Secuencia Expresada , Hibridación Genética , Oocitos , Nicotiana/fisiología
11.
Plant Sci ; 250: 205-215, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27457997

RESUMEN

Chlorophyll plays remarkable and critical roles in photosynthetic light-harvesting, energy transduction and plant development. In this study, we identified a rice Chl-deficient mutant, ygdl-1 (yellow green and droopy leaf-1), which showed yellow-green leaves throughout plant development with decreased content of Chls and carotene and an increased Chl a/b ratio. The ygdl-1 mutant also exhibited severe defects in chloroplast development, including disorganized grana stacks. Sequence analysis revealed that the mutant contained a T-DNA insertion within the promoter of a fructose-1,6-bisphosphate aldolase (OsAld-Y), which dramatically reduced the OsAld-Y mRNA level, and its identity was verified by transgenic complementation. Real-time PCR analysis showed that the expression levels of genes associated with chlorophyll biosynthesis and chloroplast development were concurrently altered in the ygdl-1 mutant. The expression of OsAld-Y-GFP fusion protein in tobacco epidermal cells showed that OsAld-Y was localized to the peroxisome. In addition, the analysis of primary carbon metabolites revealed the significantly reduced levels of sucrose and fructose in the mutant leaves, while the glucose content was similar to wild-type plants. Our results suggest that the OsAld-Y participates in Chl accumulation, chloroplast development and plant growth by influencing the photosynthetic rate of leaves and the sugar metabolism of rice.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Clorofila/biosíntesis , Fructosa-Bifosfato Aldolasa/genética , Oryza/genética , Proteínas de Plantas/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
12.
Protoplasma ; 253(2): 311-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25854793

RESUMEN

Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.


Asunto(s)
Endospermo/metabolismo , Peróxido de Hidrógeno/metabolismo , Triticum/metabolismo , Adaptación Fisiológica , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Catalasa/metabolismo , Muerte Celular , Endospermo/citología , Endospermo/efectos de los fármacos , Inundaciones , Manitol/farmacología , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Triticum/citología , Triticum/efectos de los fármacos
13.
Nat Commun ; 7: 12767, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698483

RESUMEN

The plant metabolome is characterized by extensive diversity and is often regarded as a bridge between genome and phenome. Here we report metabolic and phenotypic genome-wide studies (mGWAS and pGWAS) in rice grain that, in addition to previous metabolic GWAS in rice leaf and maize kernel, show both distinct and overlapping aspects of genetic control of metabolism within and between species. We identify new candidate genes potentially influencing important metabolic and/or morphological traits. We show that the differential genetic architecture of rice metabolism between different tissues is in part determined by tissue specific expression. Using parallel mGWAS and pGWAS we identify new candidate genes potentially responsible for variation in traits such as grain colour and size, and provide evidence of metabotype-phenotype linkage. Our study demonstrates a powerful strategy for interactive functional genomics and metabolomics in plants, especially the cloning of minor QTLs for complex phenotypic traits.


Asunto(s)
Grano Comestible/genética , Grano Comestible/metabolismo , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Perfilación de la Expresión Génica , Genes de Plantas , Ligamiento Genético , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Metaboloma , Distribución Normal , Fenotipo , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Zea mays/genética
14.
Mol Plant ; 9(10): 1366-1378, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27477683

RESUMEN

Although considerable progress has been made in identifying the genes regulating accumulation of hormones that are involved in leaf senescence, only a few studies have focused on natural variations in jasmonates content and much less on the underlying genetic basis. Moreover, the epigenetic regulation of jasmonate-mediated leaf senescence remains largely unknown. In this study, we carried out metabolic profiling of a worldwide collection of rice accessions and demonstrated that there are substantial variations in jasmonate levels among these accessions. A subsequent metabolite-based genome-wide association study identified candidates for two major quantitative genes (QTGs), OsPME1 and OsTSD2, affecting the content of jasmonates. Further investigations using a series of relevant mutants and transgenic lines revealed the MeOH-jasmonate cascade plays an important role in regulating leaf senescence. Moreover, we showed that OsSRT1, one of the two Sir2 (silent information regulator 2) homologs in rice, negatively regulates leaf senescence by repressing expression of the biosynthetic genes of this metabolic cascade and at least particially through histone H3K9 deacetylation of OsPME1. Taken together, our results indicate that the MeOH-jasmonates cascade and its epigenetic regulation are crucial for controlling leaf senescence process in rice.


Asunto(s)
Hojas de la Planta/metabolismo , Ciclopentanos/farmacología , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/efectos de los fármacos , Oryza/genética , Oryza/metabolismo , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
PLoS One ; 6(1): e15971, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21249132

RESUMEN

BACKGROUND: Asymmetric zygotic division in higher plants results in the formation of an apical cell and a basal cell. These two embryonic cells possess distinct morphologies and cell developmental fates. It has been proposed that unevenly distributed cell fate determinants and/or distinct cell transcript profiles may be the underlying reason for their distinct fates. However, neither of these hypotheses has convincing support due to technical limitations. METHODOLOGY/PRINCIPAL FINDINGS: Using laser-controlled microdissection, we isolated apical and basal cells and constructed cell type-specific cDNA libraries. Transcript profile analysis revealed difference in transcript composition. PCR and qPCR analysis confirmed that transcripts of selected embryogenesis-related genes were cell-type preferentially distributed. Some of the transcripts that existed in zygotes were found distinctly existed in apical or basal cells. The cell type specific de novo transcription was also found after zygotic cell division. CONCLUSIONS/SIGNIFICANCE: Thus, we found that the transcript diversity occurs between apical and basal cells. Asymmetric zygotic division results in the uneven distribution of some embryogenesis related transcripts in the two-celled proembryos, suggesting that a differential distribution of some specific transcripts in the apical or basal cells may involve in guiding the two cell types to different developmental destinies.


Asunto(s)
División Celular , Polaridad Celular , Perfilación de la Expresión Génica , Nicotiana/citología , Transcripción Genética , Cigoto/citología , Microdisección , Distribución Tisular , Nicotiana/embriología , Nicotiana/genética , Nicotiana/metabolismo
18.
PLoS One ; 6(8): e23153, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21829711

RESUMEN

BACKGROUND: In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum) and Hamayan (N. rustica) has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1). Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE: We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor.


Asunto(s)
Impresión Genómica , Hibridación Genética , Nicotiana/genética , Semillas/crecimiento & desarrollo , ADN Complementario , Etiquetas de Secuencia Expresada , Polimorfismo Genético , Nicotiana/embriología
19.
Protoplasma ; 233(1-2): 51-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18648730

RESUMEN

A convenient experimental system was established to test how cells derived from higher-plant internal tissues respond to mechanical stimulation. Short-term culture of tobacco ovules in vitro led to the generation of bar-shaped cells from the parenchyma tissue of the ovule funicle. These cells are still connected to the mother tissue and are almost undifferentiated. The cells are translucent, and one end protrudes from the funicle, making them easy to manipulate and observe. Mechanical stimulation tests performed on these cells indicated that the cells are less sensitive to mechanical stimulation than epidermal hair cells but still possess the ability to respond to stimulation. Interestingly, the cells showed a cytoplasmic compartmental response to the stimulation. The nucleus, some plastids, and mitochondria were organized into a responsive unit that moved in unison to the stimulated sites, whereas most of the other organelles were not notably influenced by the stimulation. This suggests that the cytoplasm is highly organized and functionally divided in response to environmental stimulation.


Asunto(s)
Compartimento Celular , Citoplasma/metabolismo , Nicotiana/citología , Núcleo Celular/metabolismo , Flores/citología , Epidermis de la Planta/citología , Estrés Mecánico
20.
Plant Signal Behav ; 3(9): 678-80, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19704824

RESUMEN

In addition to the mechanical forces of the external environment, the individual plant cell is also subject to multiple subtle biophysical forces that arise from neighboring cell growth and division within the tissue. To maintain a normal cell shape and division pattern, the plant cell is proposed to have the ability to sense and respond to repetitive subtle mechanical stimulations via nuclear-directed migration. It has been demonstrated that the nucleus is alert and highly sensitive to repetitive mechanical stimulations. Furthermore, the cytoplasm reacts to local mechanical stimulation in a compartmentalized fashion. The nucleus therefore plays a role as a chief organizer and active defender in response to mechanical stimulation. This finding provides new insight on the role of mechanical stimulation in regulating cell division and the consequent spatial positioning and shape of cells inside tissues. The finding also revealed that it necessitates further study into the reason for cytoplasmic functional compartmentalization in response to simulation in the context of cell evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA