Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 20(33): e2311859, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643382

RESUMEN

The quest for efficient hemostatic agents in emergency medicine is critical, particularly for managing massive hemorrhages in dynamic and high-pressure wound environments. Traditional self-gelling powders, while beneficial due to their ease of application and rapid action, fall short in such challenging conditions. To bridge this gap, the research introduces a novel self-gelling powder that combines ultrafast covalent gelation and robust wet adhesion, presenting a significant advancement in acute hemorrhage control. This ternary system comprises ε-polylysine (ε-PLL) and 4-arm polyethylene glycol succinyl succinate (4-arm-PEG-NHS) forming the hydrogel framework. Na2HPO4 functions as the "H+ sucker" to expedite the amidation reaction, slashing gelation time to under 10 s, crucial for immediate blood loss restriction. Moreover, PEG chains' hydrophilicity facilitates efficient absorption of interfacial blood, increasing the generated hydrogel's cross-linking density and strengthens its tissue bonding, thereby resulting in excellent mechanical and wet adhesion properties. In vitro experiments reveal the optimized formulation's exceptional tissue compliance, procoagulant activity, biocompatibility and antibacterial efficacy. In porcine models of heart injuries and arterial punctures, it outperforms commercial hemostatic agent Celox, confirming its rapid and effective hemostasis. Conclusively, this study presents a transformative approach to hemostasis, offering a reliable and potent solution for the emergency management of massive hemorrhage.


Asunto(s)
Hemorragia , Polvos , Hemorragia/tratamiento farmacológico , Animales , Porcinos , Adhesivos/química , Adhesivos/farmacología , Polietilenglicoles/química , Hemostáticos/química , Hemostáticos/farmacología , Presión , Hidrogeles/química
2.
BJOG ; 131(7): 952-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168494

RESUMEN

OBJECTIVE: To assess pelvic floor muscle (PFM) strength and influencing factors among healthy women at different life stages. DESIGN: Multicentre cross-sectional study. SETTING: Fourteen hospitals in China. POPULATION: A total of 5040 healthy women allocated to the following groups (with 1680 women per group): premenopausal nulliparous, premenopausal parous and postmenopausal. METHODS: The PFM strength was evaluated by vaginal manometry. Multivariate logistic regression was used to determine the influencing factors for low PFM strength. MAIN OUTCOME MEASURES: Maximum voluntary contraction pressure (MVCP). RESULTS: The median MVCP values were 36, 35 and 35 cmH2O in premenopausal nulliparous (aged 19-51 years), premenopausal parous (aged 22-61 years), and postmenopausal (aged 40-86 years) women, respectively. In the premenopausal nulliparous group, physical work (odds ratio, OR 2.05) was the risk factor for low PFM strength, which may be related to the chronic increased abdominal pressure caused by physical work. In the premenopausal parous group, the number of vaginal deliveries (OR 1.28) and diabetes (OR 2.70) were risk factors for low PFM strength, whereas sexual intercourse (<2 times per week vs. none, OR 0.55; ≥2 times per week vs. none, OR 0.56) and PFM exercise (OR 0.50) may have protective effects. In the postmenopausal group, the number of vaginal deliveries (OR 1.32) and family history of pelvic organ prolapse (POP) (OR 1.83) were risk factors for low PFM strength. CONCLUSIONS: Physical work, vaginal delivery, diabetes and a family history of POP are all risk factors for low PFM strength, whereas PFM exercises and sexual life can have a protective effect. The importance of these factors varies at different stages of a woman's life.


Asunto(s)
Manometría , Fuerza Muscular , Diafragma Pélvico , Posmenopausia , Premenopausia , Vagina , Humanos , Femenino , Persona de Mediana Edad , Estudios Transversales , Diafragma Pélvico/fisiología , Adulto , Manometría/métodos , Fuerza Muscular/fisiología , Anciano , Posmenopausia/fisiología , Premenopausia/fisiología , Vagina/fisiología , Factores de Riesgo , Anciano de 80 o más Años , Adulto Joven , Paridad , China/epidemiología , Contracción Muscular/fisiología , Embarazo
3.
Adv Mater ; 36(21): e2311459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346345

RESUMEN

Hair loss is characterized by the inability of hair follicles (HFs) to enter the telogen-anagen transition (TAT) and lack of de novo HFs. Current pharmaceutical therapies and surgical modalities have been largely limited to regulating hair regrowth efficiently without side effects and lacking treatment compliance. Here, this work proposes a materiobiomodulation therapy (MBMT), wherein polydopamine (PDA) nanoparticles with redox activity can be modulated to have a stoichiometric ROS (H2O2) donating ability. These nanoparticles can intracellularly deliver ROS with high-efficiency via the clathrin-dependent endocytosis process. Utilizing homozygote transgenic HyPerion (a genetically-encoded H2O2 biosensor) mice, this work also achieves in vivo dynamic monitoring of intracellular H2O2 elevation induced by ROS donators. Subcutaneous administration with ROS donators results in rapid onset of TAT and subsequent hair regrowth with a specific ROS "hormesis effect." Mechanistically, ROS activate ß-catenin-dependent Wnt signaling, upregulating hair follicle stem cell expression. This work further develops a microneedles patch for transdermal ROS delivery, demonstrating long-term, low-dose ROS release. Unlike photobiomodulation therapy (PBMT), MBMT requires no external stimuli, providing a convenient and efficient approach for clinical hair loss treatment. This material-HF communication implicates new avenues in HF-related diseases, achieving targeted ROS delivery with minimal side effects.


Asunto(s)
Folículo Piloso , Indoles , Nanopartículas , Polímeros , Especies Reactivas de Oxígeno , Animales , Folículo Piloso/metabolismo , Folículo Piloso/efectos de los fármacos , Ratones , Indoles/química , Nanopartículas/química , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Alopecia/terapia , Cabello/crecimiento & desarrollo , Cabello/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Humanos , Ratones Transgénicos
4.
Adv Sci (Weinh) ; 11(12): e2307606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225697

RESUMEN

Biology remains the envy of flexible soft matter fabrication because it can satisfy multiple functional needs by organizing a small set of proteins and polysaccharides into hierarchical systems with controlled heterogeneity in composition and microstructure. Here, it is reported that controlled, mild electronic inputs (<10 V; <20 min) induce a homogeneous gelatin-chitosan mixture to undergo sorting and bottom-up self-assembly into a Janus film with compositional gradient (i.e., from chitosan-enriched layer to chitosan/gelatin-contained layer) and tunable dense-porous gradient microstructures (e.g., porosity, pore size, and ratio of dense to porous layers). This Janus film performs is shown multiple functions for guided bone regeneration: the integration of compositional and microstructural features confers flexible mechanics, asymmetric properties for interfacial wettability, molecular transport (directional growth factor release), and cellular responses (prevents fibroblast infiltration but promotes osteoblast growth and differentiation). Overall, this work demonstrates the versatility of electrofabrication for the customized manufacturing of functional gradient soft matter.


Asunto(s)
Quitosano , Quitosano/farmacología , Gelatina/química , Regeneración Ósea , Movimiento Celular , Osteoblastos
5.
Adv Sci (Weinh) ; 11(13): e2305756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38189598

RESUMEN

Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.


Asunto(s)
Periodontitis , Andamios del Tejido , Humanos , Andamios del Tejido/química , Porosidad , Osteogénesis , Colágeno/química , Periodontitis/tratamiento farmacológico
6.
Bioact Mater ; 34: 150-163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225944

RESUMEN

Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.

7.
Biomater Transl ; 4(4): 213-233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38282708

RESUMEN

Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.

8.
Clin. transl. oncol. (Print) ; 25(10): 2772-2782, oct. 2023. tab, ilus
Artículo en Inglés | IBECS (España) | ID: ibc-225058

RESUMEN

The mechanism of deleted in lymphocytic leukemia 2 (DLEU2)-long non-coding RNA in tumors has become a major point of interest in recent research related to the occurrence and development of a variety of tumors. Recent studies have shown that the long non-coding RNA DLEU2 (lncRNA-DLEU2) can cause abnormal gene or protein expression by acting on downstream targets in cancers. At present, most lncRNA-DLEU2 play the role of oncogenes in different tumors, which are mostly associated with tumor characteristics, such as proliferation, migration, invasion, and apoptosis. The data thus far show that because lncRNA-DLEU2 plays an important role in most tumors, targeting abnormal lncRNA-DLEU2 may be an effective treatment strategy for early diagnosis and improving the prognosis of patients. In this review, we integrated lncRNA-DLEU2 expression in tumors, its biological functions, molecular mechanisms, and the utility of DLEU2 as an effective diagnostic and prognostic marker of tumors. This study aimed to provide a potential direction for the diagnosis, prognosis, and treatment of tumors using lncRNA-DLEU2 as a biomarker and therapeutic target (AU)


Asunto(s)
Humanos , Leucemia Linfoide/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA