Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neuroinflammation ; 16(1): 183, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31561751

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. METHODS: The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4-/-) naïve T cells were induced in vitro and transferred into Rag1-/- mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. RESULTS: The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4-/- CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4-/- CD4+ naïve T cells into Rag1-/- mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. CONCLUSIONS: TLR4-/- CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Transducción de Señal/fisiología , Células Th17/inmunología , Animales , Diferenciación Celular/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/inmunología , MicroARNs/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIA/metabolismo
2.
Eur J Neurosci ; 45(2): 249-259, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27873367

RESUMEN

Remyelination is limited in patients with multiple sclerosis (MS) due to the difficulties in recruiting proliferating oligodendrocyte precursors (OPCs), the inhibition of OPC differentiation and/or maturation, and/or failure in the generation of the myelin sheath. In vitro studies have revealed that miR-219 is necessary for OPC differentiation and monocarboxylate transporter 1 (MCT1) plays a vital role in oligodendrocyte maturation and myelin synthesis. Herein, we hypothesized that miR-219 might promote oligodendrocyte differentiation and attenuate demyelination in a cuprizone (CPZ)-induced demyelinated model by regulating the expression of MCT1. We found that CPZ-treated mice exhibited significantly increased anxiety in the open field test. However, miR-219 reduced anxiety as shown by an increase in the total distance, the central distance and the mean amount of time spent in the central area. miR-219 decreased the quantity of OPCs and increased the number of oligodendrocytes and the level of myelin basic protein (MBP) and cyclic nucleotide 3' phosphodiesterase (CNP) protein. Ultrastructural studies further confirmed that the extent of demyelination was attenuated by miR-219 overexpression. Meanwhile, miR-219 also greatly enhanced MCT1 expression via suppression of oligodendrocyte differentiation inhibitors, Sox6 and Hes5, treatment with the MCT1 inhibitor α-cyano-4-hydroxycinnamate (4-CIN) reduced the number of oligodendrocytes and the protein levels of MBP and CNP. Taken together, these results suggest a novel mode of action of miR-219 via MCT1 in vivo and may provide a new potential remyelination therapeutic target.


Asunto(s)
Ácidos Cumáricos/farmacología , Cuprizona/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , MicroARNs/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oligodendroglía/efectos de los fármacos , Simportadores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Cuerpo Calloso/metabolismo , Enfermedades Desmielinizantes/genética , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Células Madre/clasificación , Células Madre/metabolismo
3.
Biochem Biophys Res Commun ; 491(3): 636-641, 2017 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-28757412

RESUMEN

Aging is accompanied by deficits in cognitive function and neuronal degeneration or loss. Quercetin is a flavonoid that exhibits powerful antioxidant activity. This study evaluated the protective effects and mechanisms of quercetin in d-galactose-induced neurotoxicity in mice. Quercetin was administered daily at doses of 20 or 50 mg/kg in d-galactose-injected (50 mg/kg/subcutaneous (s.c.)) mice for eight weeks. Morris water maze tests demonstrated that quercetin significantly improved learning and memory compared to d-galactose-treated control mice. Quercetin also prevented changes in the neuronal cell morphology and apoptosis in the hippocampus as well as increased the expression of Nrf2, HO-1 and SOD in d-galactose-treated mice. Treatment with the Nrf2 inhibitor Brusatol reversed the effects of quercetin on HO-1 and SOD expression as well as neuronal cell protection. In conclusion, quercetin protected mice from d-galactose-induced cognitive functional impairment and neuronal cell apoptosis via activation of the Nrf2-ARE signaling pathway.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Trastornos del Conocimiento/prevención & control , Trastornos del Conocimiento/fisiopatología , Hipocampo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Quercetina/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Trastornos del Conocimiento/inducido químicamente , Relación Dosis-Respuesta a Droga , Galactosa , Hipocampo/patología , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/prevención & control , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/prevención & control , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Neurotoxinas , Quercetina/administración & dosificación , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
4.
Brain Behav Immun ; 57: 193-199, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27006279

RESUMEN

T helper cells 17 (Th17) are recognized as key participants in the pathogenesis of chronic autoimmune diseases such as multiple sclerosis (MS). Regulation of Th17 differentiation is a valuable strategy for diagnosis and treatment of these complicated immune disorders. Here, by genome-wide expression profiling of microRNAs (miRs), we screened miR-30a, whose level was greatly decreased during Th17 differentiation and the process of demyelination disease, both in MS patients and experimental autoimmune encephalomyelitis (EAE) mice. Enforced constitutive expression of miR-30a in naïve T cells inhibited their differentiation into Th17, and in vivo overexpression of miR-30a resulted in fewer Th17 and alleviative EAE. Moreover, target prediction analysis and dual luciferase report assay revealed that interleukin-21 receptor (IL-21R) was a direct target of miR-30a, a finding consistent with the results that miR-30a downregulated the expression of IL-21R, while overexpression of IL-21R alleviated the inhibitory effect of miR-30a on Th17 differentiation. Taken together, our findings imply that miR-30a inhibits Th17 differentiation and the pathogenesis of MS by targeting IL-21R.


Asunto(s)
Diferenciación Celular , Encefalomielitis Autoinmune Experimental/metabolismo , Subunidad alfa del Receptor de Interleucina-21/metabolismo , MicroARNs/metabolismo , Esclerosis Múltiple/metabolismo , Células Th17 , Adulto , Animales , Humanos , Ratones , Ratones Endogámicos C57BL
5.
Cell Mol Neurobiol ; 35(7): 913-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25833395

RESUMEN

One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.


Asunto(s)
Enfermedades Desmielinizantes/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Glucosa/deficiencia , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Masculino , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Dev Growth Differ ; 56(7): 511-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25200136

RESUMEN

Oligodendrocyte progenitor cells (OPCs) transplantation is receiving considerable attention in the field of regenerative medicine therapy for demyelinating diseases. Although embryonic stem cells (ESCs) have been successfully induced to differentiate into OPCs with cytokines cocktails in vitro, the regulatory roles of many key transcription factors in this process are not clear. Here, we introduced oligodendrocyte lineage transcription factor 2 (Olig2), a basic helix-loop-helix transcription factor, into mouse embryonic stem cells (mESCs) to investigate its effects on the differentiation of mESCs into OPCs. The results showed that Olig2 overexpression alone did not affect pluripotency of mESCs, but in the stimulation of differentiating cocktails, Olig2 accelerated mESCs to differentiate into OPCs, shortening the induction time span from normal 21 days to 11 days. Further study demonstrated the Olig2-mESCs derived OPCs were able to differentiate into C-type natriuretic peptid (CNP) and Myelin Basic Protein (MBP) positive mature oligodendrocytes (OLs) in vitro, suggesting these induced OPCs might be favorable for myelin regeneration in vivo.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/citología , Células Madre/citología , Análisis de Varianza , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Diferenciación Celular/genética , Técnica del Anticuerpo Fluorescente , Ratones , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Medicina Regenerativa/métodos
7.
Cell Mol Neurobiol ; 34(3): 463-71, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24519463

RESUMEN

The aim of this study was to investigate quercetin's (Qu) ability to promote proliferation and differentiation of oligodendrocyte precursor cells (OPCs) under oxygen/glucose deprivation (OGD)-induced injury in vitro. The results showed that after OGD, OPCs survival rate was significantly increased by Qu as measured by Cell Counting Kit-8. Furthermore, Qu treatment reduced apoptosis of OPCs surveyed by Hoechst 33258 nuclear staining. Qu at 9 and 27 µM promoted the proliferation of OPCs the most by Brdu and Olig2 immunocytochemical staining after OGD 3 days. Also, Qu treatment for 8 days after OGD, the differentiation of OPCs to oligodendrocyte was detected by immunofluorescence staining showing that O4, Olig2, and myelin basic protein (MBP) positive cells were significantly increased compared to control group. Additionally, the protein levels of Olig2 and MBP of OPCs were quantified using western blot and mRNA levels of Olig2 and Inhibitor of DNA binding 2 (Id2) were measured by RT-PCR. Western blot showed a significant increase in Olig2 and MBP expression levels compared with controls after OGD and Qu treatment with a linear does-response curve from 3 to 81 µM. After treatment with Qu compared to its control group, Olig2 mRNA level was significantly up-regulated, whereas Id2 mRNA level was down-regulated. In conclusion, Qu at 3-27 µM can promote the proliferation and differentiation of OPCs after OGD injury and may regulate the activity of Olig2 and Id2.


Asunto(s)
Diferenciación Celular/fisiología , Glucosa/metabolismo , Oligodendroglía/metabolismo , Oxígeno/metabolismo , Quercetina/farmacología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucosa/deficiencia , Humanos , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos
8.
J Immunol ; 189(3): 1182-92, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753940

RESUMEN

Suppression of immune response by mesenchymal stem/stromal cells (MSCs) is well documented. However, their regulatory effects on immune cells, especially regulatory dendritic cells, are not fully understood. We have identified a novel Sca-1(+)Lin(-)CD117(-) MSC population isolated from mouse embryonic fibroblasts (MEF) that suppressed lymphocyte proliferation in vitro. Moreover, the Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced hematopoietic stem/progenitor cells to differentiate into novel regulatory dendritic cells (DCs) (Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs) when cocultured in the absence of exogenous cytokines. Small interfering RNA silencing showed that Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced the generation of Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs via IL-10-activated SOCS3, whose expression was regulated by the JAK-STAT pathway. We observed a high degree of H3K4me3 modification mediated by MLL1 and a relatively low degree of H3K27me3 modification regulated by SUZ12 on the promoter of SOCS3 during SOCS3 activation. Importantly, infusion of Sca-1(+)CD117(-)Lin(-) MEF-MSCs suppressed the inflammatory response by increasing DCs with a regulatory phenotype. Thus, our results shed new light on the role of MSCs in modulating regulatory DC production and support the clinical application of MSCs to reduce the inflammatory response in numerous disease states.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Interleucina-10/fisiología , Células Madre Mesenquimatosas/inmunología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Línea Celular , Técnicas de Cocultivo , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Fibroblastos/inmunología , Fibroblastos/metabolismo , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Células del Estroma/inmunología , Células del Estroma/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Regulación hacia Arriba/inmunología
9.
Biochem Mol Biol Educ ; 52(3): 323-331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38308542

RESUMEN

The primary objective of science postgraduate education is to foster students' capacity for creative thinking and problem-solving, particularly in the context of scientific research quality. In order to achieve this goal, the "7E" teaching mood has been implemented in the cell biology course for postgraduate students to promote student-centered active inquiry learning instead of breaking away from traditional indoctrination-based teaching methods. This study demonstrates that the implementation of the "7E" teaching mode, through content programming, process design, and effect evaluation, effectively meets the needs of the majority of students, fosters their interest in learning, enhances their performance in comprehensive questioning, and enhances their innovative abilities in scientific research. Consequently, this research offers a theoretical framework and practical foundation for the development of the "7E" teaching mode in postgraduate courses, aiming to cultivate highly skilled scientific professionals.


Asunto(s)
Biología Celular , Aprendizaje Basado en Problemas , Estudiantes , Humanos , Estudiantes/psicología , Aprendizaje Basado en Problemas/métodos , Biología Celular/educación , Enseñanza , Curriculum , Educación de Postgrado/métodos , Aprendizaje
10.
Cell Mol Immunol ; 18(9): 2177-2187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363030

RESUMEN

Circular RNAs (circRNAs) regulate gene expression and participate in various biological and pathological processes. However, little is known about the effects of specific circRNAs on T helper cell 17 (Th17) differentiation and related autoimmune diseases, such as multiple sclerosis (MS). Here, using transcriptome microarray analysis at different stages of experimental autoimmune encephalomyelitis (EAE), we identified the EAE progression-related circINPP4B, which showed upregulated expression in Th17 cells from mice with EAE and during Th17 differentiation in vitro. Silencing of circINPP4B inhibited Th17 differentiation and alleviated EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. Mechanistically, circINPP4B served as a sponge that directly targeted miR-30a to regulate Th17 differentiation. Furthermore, circINPP4B levels were associated with the developing phases of clinical relapsing-remitting MS patients. Our results indicate that circINPP4B plays an important role in promoting Th17 differentiation and progression of EAE by targeting miR-30a, which provides a potential diagnostic and therapeutic target for Th17-mediated MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Células Th17
11.
Exp Neurol ; 337: 113593, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33387462

RESUMEN

Increasing evidence has demonstrated that the Nod-like receptor pyrin domain containing 3 (Nlrp3) inflammasome overactivated during demyelinating disorders. It has been implicated that transient receptor potential type 4 (Trpv4) is regarded as a polymodal ionotropic receptor that plays an important role in a multitude of pathological conditions, including inflammation. The aim of this study was to investigate whether the Trpv4 channel regulates Nlrp3 inflammasome in the corpus callosum of mice with demyelination. Our results showed that CPZ treatment significantly increased the expression of Trpv4, activated Nlrp3 inflammasome, reduced peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and decreased mitochondrial function. siRNA-mediated Nlrp3 knockdown inhibited glial activation and alleviated demyelination. Whereas knockdown of Trpv4 by siRNA markedly ameliorated Nlrp3 inflammasome activation and restored mitochondrial function as well as reducing the level of reactive oxygen species (ROS). Meanwhile, glial activation, demyelination and behavioral impairment induced by CPZ were also alleviated by siRNA-mediated Trpv4 knockdown. Furthermore, immunoprecipitation and use of a lysine acetylation assay showed that Sirtuin1 (SIRT1) mediated the PGC-1α deacetylation, which is involved in Nlrp3 inflammasome activation. These findings suggest that Trpv4 regulates mitochondrial function through the SIRT1/PGC-1α pathway, which further trigger Nlrp3 inflammasome activation in the CPZ-induced demyelination in mice.


Asunto(s)
Enfermedades Desmielinizantes/genética , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Sirtuina 1/genética , Canales Catiónicos TRPV/fisiología , Animales , Quelantes , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Cuerpo Calloso/patología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/psicología , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuroglía , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno
12.
Neurol Res ; 43(7): 543-552, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33616025

RESUMEN

Objectives: The extracellular matrix glycoprotein Reelin plays an important role in the development of the central nervous system and is involved in neurogenesis, neuronal polarization and migration. Although it has been reported that Reelin and its receptor are expressed in oligodendrocyte precursors (OPCs), the main functions and possible mechanism of Reelin in OPCs remain unclear.Methods: In this study, immunofluorescence staining was used to detect the expressions of A2B5, PDGFRα, Reelin, VLDLR and Dab1 in OPCs. The expression of p-Dab1 in OPCs which was treated with Reelin at different concentrations was assayed by western blot. Effects of Reelin on the proliferation of OPCs was measured by EdU and CCK-8. Annexin V-FITC/PI assayed the effect of Reelin on the apoptosis of OPCs. Effects of Reelin on the migration ability of OPCs were detected by the scratch test and transwell experiments. Immunoblotting was used to measure the activation of Wnt/ß-catenin signaling with Reelin, while transwell experiments were performed to verify the migration of OPCs under the activation of Wnt/ß-catenin signaling.Results: Results showed that the receptor of Reelin, very-low-density lipoprotein receptor (VLDLR), and its adaptor protein, Dab1, are highly expressed in A2B5/PDGFRα double-positive OPCs. Recombinant Reelin protein promoted OPCs migration in vitro but had no obvious effects on proliferation or apoptosis. Reelin also promoted the phosphorylation of Dab1 and increased the expression of ß-catenin in OPCs. WIKI4, an inhibitor of Wnt/ß-catenin signaling, suppressed the migration of OPCs induced by Reelin.Conclusion: The present study indicated that Reelin promotes OPCs migration via the Wnt/ß-catenin pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Serina Endopeptidasas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Movimiento Celular/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Fosforilación , Ratas Sprague-Dawley , Proteína Reelina
13.
Neurosci Bull ; 37(1): 15-30, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33015737

RESUMEN

The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3ß, a key regulatory kinase in the Wnt pathway, regulates the ability of ß-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3ß activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3ß, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Diferenciación Celular , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Factores de Transcripción Forkhead/genética , Glucógeno Sintasa Quinasa 3 , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina , Proteínas del Tejido Nervioso , Oligodendroglía , Vía de Señalización Wnt
14.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34702946

RESUMEN

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Asunto(s)
COVID-19/terapia , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas , Anciano , Animales , Anticuerpos Antivirales/sangre , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Proteína C-Reactiva/análisis , COVID-19/inmunología , COVID-19/virología , Citocinas/genética , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología
15.
Mol Genet Metab ; 96(4): 239-44, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19157944

RESUMEN

Tumor necrosis factor-alpha (TNF-alpha), a key inflammatory cytokine, plays an important role in atherosclerosis. However, its precise characters in primary stage of the disease remain unclear. To assess the influence of TNF-alpha on inflammatory factors in aorta and liver in apoE and TNF-alpha double mutant (AT) mice, a comparative study on early fatty-streak lesion, the mRNA level of target gene in aorta and liver of adolescent AT and apoE-null (apoE(-/-)) mice were achieved. The characteristics of expression of inflammatory factors, and early fatty-streak lesion relevance were analyzed. The plasma cytokines in 6-week-old AT and apoE(-/-) mice were also measured. Lipid accumulation in the intima of the aorta existed as early as 3 weeks of age in apoE(-/-) mice. Fatty-streak lesion was mild in AT mice but prominent in apoE(-/-) mice, at age of 6 weeks. Furthermore, most interesting findings indicate that mRNA levels of pro-atherosclerotic factors, i.e. IL-1beta, IFN-gamma, ICAM-1, VCAM-1, MCP-1, GM-CSF and NF-kappaB (p65) were significantly downregulated in AT mice. Whereas IL-2 and IkappaB-alpha were upregulated in aorta of AT mice versus those in apoE(-/-) mice (p<0.01) and the transcript levels of pro-inflammatory cytokines, such as IL-1beta, IFN-gamma, ICAM-1, VCAM-1, MCP-1 and GM-CSF, increased with atherogenesis progression. On the other hand, the expression of these inflammatory factors in the liver displayed somewhat similar fashion to those in the aorta. Moreover, the plasma lipids profile in AT mice showed less pro-atherogenic than that of apoE(-/-) mice. Our data indicated that TNF-alpha deficiency surely, although not completely, retards fatty-streak lesion formation due to downregulated expression of the pro-atherosclerotic inflammatory factors in the present circumstance.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/prevención & control , Mediadores de Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/deficiencia , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/metabolismo , Aterosclerosis/sangre , Aterosclerosis/patología , Regulación de la Expresión Génica , Genotipo , Lípidos/sangre , Hígado/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/sangre
16.
Inflammation ; 42(2): 586-597, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30343391

RESUMEN

Multiple sclerosis (MS) is a chronic and inflammatory disease of the central nervous system that is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. Hydrogen-rich saline (HRS) is efficacious in preventive and therapeutic applications for many disorders because of its antioxidant and anti-inflammatory properties. Here, we determined the effect of HRS in experimental autoimmune encephalomyelitis (EAE), which is a generally accepted model of the immuno-pathogenic mechanisms underlying MS. We found that HRS reduced the severity of EAE in mice and alleviated inflammation and demyelination. Furthermore, treatment with HRS attenuated oxidative stress in EAE mice. Finally, the results of our study suggest that activation of the Nrf2-ARE pathway plays a critical role in the protective effects of HRS in EAE mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Hidrógeno/uso terapéutico , Animales , Enfermedades Desmielinizantes/prevención & control , Encefalomielitis Autoinmune Experimental/patología , Inflamación/prevención & control , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras , Solución Salina/química
17.
Front Cell Dev Biol ; 7: 253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737624

RESUMEN

MicroRNAs are powerful regulators of gene expression in physiological and pathological conditions. We previously showed that the dysregulation of miR-384 resulted in a T helper cell 17 (Th17) imbalance and contributed to the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. In this study, we evaluated the molecular mechanisms underlying the abnormal increase in miR-384. We did not detect typical CpG islands in the Mir384 promoter. Based on a bioinformatics analysis of the promoter, we identified three conserved transcription factor binding regions (RI, RII, and RIII), two of which (RII and RIII) were cis-regulatory elements. Furthermore, we showed that signal transducer and activator of transcription 3 (STAT3) bound to specific sites in RII and RIII based on chromatin immunoprecipitation, electrophoretic mobility shift assays, and site-specific mutagenesis. During Th17 polarization in vitro, STAT3 activation up-regulated miR-384, while a STAT3 phosphorylation inhibitor decreased miR-384 levels and reduced the percentage of IL-17+ cells, IL-17 secretion, and expression of the Th17 lineage marker Rorγt. Moreover, the simultaneous inhibition of STAT3 and miR-384 could further block Th17 polarization. These results indicate that STAT3, rather than DNA methylation, contributes to the regulation of miR-384 during Th17 polarization.

18.
J Neuroimmune Pharmacol ; 14(3): 493-502, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31065973

RESUMEN

Toll-like receptor 4 (TLR4) is a key component in innate immunity and has been linked to central nervous system (CNS) inflammation diseases, such as multiple sclerosis (MS), an inflammatory disorder induced by autoreactive Th17 cells. In our study, we found that TLR4 deficient (TLR4-/-) mice were inadequate to induce experimental autoimmune encephalomyelitis (EAE), characterized by low clinic score and weight loss, alleviative demyelinating, as well as decreased inflammatory cell infiltration in the spinal cord. In the lesion area of EAE mice, loss of TLR4 down-regulated the secretion of inflammatory cytokines and chemokine CCL25. Furthermore, the expression of CCR9 was decreased and chemotactic migration was attenuated in TLR4-/- Th17 cells. Our results demonstrate that TLR4 may mediate Th17 infiltration through CCL25/CCR9 signal during pathogenesis of EAE. Graphical Abstract Immunofluorescent staining of RORγt (green) and CCR9 (red) in spinal cords. TLR4 deficiency down-regulates CCR9 expression in infiltrating lymphocytes.


Asunto(s)
Quimiocinas CC/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Receptores CCR/fisiología , Células Th17/metabolismo , Receptor Toll-Like 4/fisiología , Animales , Células Cultivadas , Quimiotaxis de Leucocito , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Regulación de la Expresión Génica/fisiología , Linfopoyesis , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad , Receptores CCR/biosíntesis , Transducción de Señal/fisiología , Médula Espinal/patología , Bazo/inmunología , Bazo/patología , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética
19.
Brain Res Bull ; 143: 234-245, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30266587

RESUMEN

S100A8/A9, a heterodimer complex composed of calcium-binding proteins S100A8 and S100A9, is significantly increased in the serum of multiple sclerosis (MS) patients. Relevant reports have revealed that MS pathology is commonly associated with the activation of microglial cells and the damage of oligodendrocyte precursor cells (OPCs). Moreover, microglia activation following stimulation increases the expression of pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), which further exacerbate the damage to OPCs. In this study, we were the first to confirm that S100A8/A9 treatment induced the activation, proliferation and migration of the murine microglia cell line BV-2; moreover, this treatment caused the cells to switch from an anti-inflammatory activated (M2) phenotype to a pro-inflammatory activated (M1) phenotype. Meanwhile, the level of the phosphorylated nuclear factor-κB (p-NF-κB) P65 protein was remarkably elevated, and the production of pro-inflammatory factors (IL-1ß, TNF-α, MMP-9) and chemokines (CCL2, CCL3, CXCL10) was also increased in the S100A8/A9-treated BV-2 microglial cells. Inhibition of NF-κB P65 phosphorylation reversed the effects of S100A8/A9 on the production of pro-inflammatory factors and chemokines. We also explored the effects of S100A8/A9 and S100A8/A9-activated BV-2 microglial cells on the viability of OPCs. The results showed that both the S100A8/A9 complex and the conditioned medium (CM) of the S100A8/A9-activated BV-2 microglial cells resulted in OPC apoptosis, which was more pronounced in the case of the CM treatment. However, OPC apoptosis in the CM group was obviously decreased through the inhibition of NF-κB p65 phosphorylation. This study indicates that S100A8/A9 induces the activation of BV-2 microglial cells and promotes the production of pro-inflammatory factors by activating the NF-κB signaling pathway, which further exacerbates OPC damage.


Asunto(s)
Calgranulina A/fisiología , Calgranulina B/fisiología , Microglía/fisiología , Animales , Apoptosis , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/metabolismo , Femenino , Inflamación , Interleucina-1beta/metabolismo , Activación de Macrófagos , Macrófagos/patología , Masculino , FN-kappa B/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Fosforilación , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
20.
Front Cell Neurosci ; 12: 392, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455633

RESUMEN

The inhibition of demyelination and the promotion of remyelination are both considerable challenges in the therapeutic process for many central nervous system (CNS) diseases. Increasing evidence has demonstrated that neuroglial activation and neuroinflammation are responsible for myelin sheath damage during demyelinating disorders. It has been revealed that the nonselective cation channel transient receptor potential vanilloid 4 (TRPV4) profoundly affects a variety of physiological processes, including inflammation. However, its roles and mechanisms in demyelination have remained unclear. Here, for the first time, we found that there was a significant increase in TRPV4 in the corpus callosum in a demyelinated mouse model induced by cuprizone (CPZ). RN-1734, a TRPV4-antagonist, clearly alleviated demyelination and inhibited glial activation and the production of tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) without altering the number of olig2-positive cells. In vitro, RN-1734 treatment clearly inhibited the influx of calcium and decreased the levels of IL-1ß and TNF-α in lipopolysaccharide (LPS)-activated microglial cells by suppressing NF-κB P65 phosphorylation. Apoptosis of oligodendrocyte induced by LPS-activated microglia was also alleviated by RN-1734. The results suggest that activation of TRPV4 in microglia is involved in oligodendrocyte apoptosis through the activation of the NF-κB signaling pathway, thus revealing a new mechanism of CNS demyelination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA