Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 108(1): 55-66, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273207

RESUMEN

Aluminium (Al) stress is a major limiting factor for worldwide crop production in acid soils. In Arabidopsis thaliana, the TAA1-dependent local auxin biosynthesis in the root-apex transition zone (TZ), the major perception site for Al toxicity, is crucial for the Al-induced root-growth inhibition, while the mechanism underlying Al-regulated auxin accumulation in the TZ is not fully understood. In the present study, the role of auxin transport in Al-induced local auxin accumulation in the TZ and root-growth inhibition was investigated. Our results showed that PIN-FORMED (PIN) proteins such as PIN1, PIN3, PIN4 and PIN7 and AUX1/LAX proteins such as AUX1, LAX1 and LAX2 were all ectopically up-regulated in the root-apex TZ in response to Al stress and coordinately regulated local auxin accumulation in the TZ and root-growth inhibition. The ectopic up-regulation of PIN1 in the TZ under Al stress was regulated by both ethylene and auxin, with auxin signalling acting downstream of ethylene. Al-induced PIN1 up-regulation and auxin accumulation in the root-apex TZ was also regulated by the calossin-like protein BIG. Together, our results provide insight into how Al stress induces local auxin accumulation in the TZ and root-growth inhibition through the local regulation of auxin transport.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Regulación hacia Arriba
2.
New Phytol ; 233(6): 2471-2487, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34665465

RESUMEN

ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN-LIKE24 (CML24) in Al-inhibited root growth and downstream molecular regulation of ALMT1-meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root-growth inhibition of the cml24 loss-of-function mutant under Al stress. This occurs mainly through the regulation of the ALMT1-mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root-growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1-depdendent Al resistance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Anión Orgánico , Aluminio/metabolismo , Aluminio/toxicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Malatos/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Raíces de Plantas/metabolismo
3.
Plant Biotechnol J ; 19(12): 2576-2588, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34416090

RESUMEN

To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNA-seq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na+ -selective transporter that maintains K+ /Na+ homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activation-tagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances saline-alkaline stress tolerance in rice.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Dominios PR-SET , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Estrés Fisiológico/genética
4.
BMC Genomics ; 18(1): 24, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056779

RESUMEN

BACKGROUND: Soil alkalinity shows significant constraints to crop productivity; however, much less attention has been paid to analyze the effect of soil alkalinity on plant growth and development. Shanrong No. 4 (SR4) is an alkalinity tolerant bread wheat cultivar selected from an asymmetric somatic hybridization between the bread wheat cultivar Jinan 177 (JN177) and tall wheatgrass (Thinopyrum ponticum), which is a suitable material for studying alkalinity tolerant associate genes. RESULTS: The growth of SR4 plant seedlings was less inhibited than that of JN177 when exposed to alkalinity stress conditions. The root cytosolic Na+/K+ ratio in alkalinity stressed SR4 was lower than in JN177, while alkalinity stressed SR4 contained higher level of nutrient elements than in JN177. SR4 plant seedlings accumulated less malondialdehyde (MDA) and reactive oxygen species (ROS), it also showed higher activity of ROS scavenging enzymes than JN177 under alkalinity stress. The root intracellular pH decreased in both alkalinity stressed JN177 and SR4, however, it was much lower in SR4 than in JN177 under alkalinity stress. The transcriptomes of SR4 and JN177 seedlings exposed to alkalinity stress were analyzed by digital gene expression tag profiling method. Alkalinity stress conditions up- and down-regulated a large number of genes in the seedling roots that play the functions in the categories of transcription regulation, signal transduction and protein modification. CONCLUSIONS: SR4 expresses a superior tolerance to alkaline stress conditions which is due to its strong absorbing ability for nutrient ions, a strong regulating ability for intracellular and rhizosphere pH and a more active ROS scavenging ability.


Asunto(s)
Adaptación Biológica/genética , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Estrés Fisiológico/genética , Transcriptoma , Triticum/genética , Raíces de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Suelo/química
5.
Plant Physiol ; 161(3): 1217-28, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23321418

RESUMEN

The 12-oxo-phytodienoic acid reductases (OPRs) are classified into the two subgroups OPRI and OPRII. The latter proteins participate in jasmonic acid synthesis, while the function of the former ones is as yet unclear. We describe here the characterization of the OPRI gene TaOPR1, isolated from the salinity-tolerant bread wheat (Triticum aestivum) cultivar SR3. Salinity stress induced a higher level of TaOPR1 expression in the seedling roots of cv SR3 than in its parental cultivar, JN177. This induction was abolished when abscisic acid (ABA) synthesis was inhibited. The overexpression of TaOPR1 in wheat significantly enhanced the level of salinity tolerance, while its heterologous expression in Arabidopsis alleviated root growth restriction in the presence of salinity and oxidants and raised the sensitivity to ABA. In Arabidopsis, TaOPR1 promoted ABA synthesis and the ABA-dependent stress-responsive pathway, partially rescued the sensitivity of the Arabidopsis aba2 mutant defective in ABA synthesis to salinity, and improved the activities of reactive oxygen species scavengers and the transcription of their encoding genes while reducing malondialdehyde and reactive oxygen species levels. TaOPR1 did not interact with jasmonate synthesis or the jasmonate signaling pathway. Rather than serving purely as an antioxidant, we believe that TaOPR1 acts during episodes of abiotic stress response as a signaling compound associated with the regulation of the ABA-mediated signaling network.


Asunto(s)
Ácido Abscísico/metabolismo , Depuradores de Radicales Libres/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Transducción de Señal/genética , Triticum/enzimología , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Ciclopentanos/metabolismo , Genes de Plantas/genética , Peróxido de Hidrógeno/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Tolerancia a la Sal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/genética , Triticum/fisiología
6.
Sci Total Environ ; 689: 90-98, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271993

RESUMEN

Water consumption and pollution in wheat production, which are worth paying attention in agricultural countries and arid regions, need to be assessed systematically and comprehensively. China, one of the largest wheat-producing country in the world, should be concerned about this issue. Thus, an impact-oriented water footprint assessment of wheat production in China was conducted based on the ISO 14046 standard to quantify water-related environmental impacts. We quantified the environmental impacts on human health and ecosystem quality categories of wheat production from 2009 to 2016 and evaluated the spatial variation of these categories in 2016. Results showed that the environmental impacts on human health and ecosystem quality categories in 2016 were 5.15 × 10-4 DALY/t and 37.17 PDF·m2·yr/t, respectively. Key factor analysis showed that the overall environmental impacts were primarily derived from fertilizer production, diesel production, and direct water consumption and emission. The dynamic analysis results revealed that the temporal variations in impacts were associated with water and fertilizer consumption. Areas with high potential impacts were mainly congregated in the North China Plain and Xinjiang Province due to their high wheat yields. Ecosystem quality was negatively correlated with wheat yield, and human health was positively correlated with crop water requirement. Therefore, on the basis of ensuring grain production, improving the utilization efficiency of irrigation water and reducing fertilizer and diesel consumption are the priorities for the management of agricultural water resources.


Asunto(s)
Riego Agrícola , Producción de Cultivos , Triticum/metabolismo , Agua/metabolismo , China , Toma de Decisiones , Análisis Espacio-Temporal , Agua/análisis
7.
Plant Sci ; 252: 133-143, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717449

RESUMEN

Under long day (LD) lengths, flowering can be delayed in rice by modulating several regulatory genes. We found activation tagging lines that showed an early flowering phenotype preferentially under LD conditions. Expression of Rice outermost cell-specific gene 4 (Roc4), encoding a homeodomain Leu-zipper class IV family protein, was significantly increased. Transcript levels of Grain number, plant height, and heading date7 (Ghd7) were significantly reduced while those of Ghd7 downstream genes were increased. However, other flowering regulators were unaffected. Whereas constitutive overexpression of Roc4 in 'Dongjin' japonica rice, which carries active Ghd7, also caused LD-preferential early flowering, its overexpression in 'Longjing27' rice, which is defective in functional Ghd7, did not produce the same result. This confirmed that Roc4 regulates flowering time mainly through Ghd7. Phytochromes and O. sativa GIGANTEA (OsGI) function upstream of Roc4. Transgenic plants showed ubiquitous expression of the ß-glucuronidase reporter gene under the Roc4 promoter. Furthermore, Roc4 had transcriptional activation activity in the N-terminal region of the StAR-related lipid-transfer domain. All of these findings are evidence that Roc4 is an LD-preferential flowering enhancer that functions downstream of phytochromes and OsGI, but upstream of Ghd7.


Asunto(s)
Proteínas de Homeodominio/fisiología , Oryza/genética , Proteínas de Plantas/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes Reporteros , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Oryza/crecimiento & desarrollo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Tiempo
8.
Plant Signal Behav ; 8(12): e26429, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056047

RESUMEN

The plant hormone auxin plays a critical role in the maintenance of root stem cell niches in Arabidopsis. We have recently reported that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates free auxin production in the quiescent center (QC) of the root and its expression is inhibited in a feedback-dependent manner by canonical auxin signaling that involves indole-3-acetic acid 17 (IAA17) auxin response repressor. WOX5-IAA17 feedback circuit assures the maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stem cell (DSC) populations. Here, we provide evidence to show that an optimal auxin maximum in QC guided auxin signaling gradient in root tips is crucial for maintaining root DSC identity.


Asunto(s)
Arabidopsis/citología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/citología , Células Madre/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal , Células Madre/metabolismo
9.
PLoS One ; 8(11): e79618, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223981

RESUMEN

Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s).


Asunto(s)
Acuaporinas/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Triticum/genética , Ácido Abscísico/farmacología , Acuaporinas/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Expresión Génica , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Prolina/biosíntesis , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
10.
PLoS One ; 8(5): e63033, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671653

RESUMEN

Leaf type is an important trait that closely associates with crop yield. WRKY transcription factors exert diverse regulatory effects in plants, but their roles in the determination of leaf type have not been reported so far. In this work, we isolated a WRKY transcription factor gene TaWRKY71-1 from a wheat introgression line SR3, which has larger leaves, superior growth capacity and higher yield than its parent common wheat JN177. TaWRKY71-1 specifically expressed in leaves, and produced more mRNA in SR3 than in JN177. TaWRKY71-1 localized in the nucleus and had no transcriptional activation activity. TaWRKY71-1 overexpression in Arabidopsis resulted in hyponastic rosette leaves, and the hyponastic strength was closely correlative with the transcription level of the transgene. The spongy mesophyll cells at abaxial side of leaves were drastically compacted by TaWRKY71-1 overexpression. In TaWRKY71-1 overexpression Arabidopsis, the expression of IAMT1 that encodes a methyltransferase converting free indole-3-acetic acid (IAA) to methyl-IAA ester (MeIAA) to alter auxin homeostatic level was induced, and the induction level was dependent on the abundance of TaWRKY71-1 transcripts. Besides, several TCP genes that had found to be restricted by IAMT1 had lower expression levels as well. Our results suggest that TaWRKY71-1 causes hyponastic leaves through altering auxin homeostatic level by promoting the conversion of IAA to MeIAA.


Asunto(s)
Arabidopsis/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Triticum/clasificación
11.
Plant Signal Behav ; 7(1): 71-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22301971

RESUMEN

In our previous study, we found wheat TaCHP confers salt tolerance through regulating salt responsive signaling pathways. TaCHP possesses three divergent C1 domains that can specifically bind to phospholipid signaling molecule diacylglycerol (DAG) in animal cells, and most of proteins with this domain have kinase activity. Here, we found that TaCHP localizes both at cytoplasmatic membrane and in nuclei; it has no kinase activity but transcriptional activation activity, and the latter owes to C-terminal two C1 domains. TaCHP transcription was reduced by H2O2 application, but its ectopic expression in Arabidopsis improved both ROS production and scavenging capacity, and enhanced tolerance to H2O2 application. We suggest that TaCHP serve as both a transcription factor and a putative DAG binding protein to confer salt tolerance in part through improving ROS scavenging capacity; which is a component of the cross-talk machinery in the phospholipids-ROS-salt responsive signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Sales (Química) , Estrés Fisiológico , Oxidación-Reducción , Fosfolípidos/metabolismo , Transducción de Señal
12.
Gene ; 511(1): 38-45, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23000066

RESUMEN

A screen conducted on both a suppression subtractive hybridization and a full length cDNA library made from a salinity tolerant bread wheat cultivar SR3 (Triticum aestivum cv. SR3) resulted in the recognition of TaERF4, a gene including both an AP2/ERF domain and a nuclear localization signal. The 982 bp TaERF4 cDNA comprised a 582 bp open reading frame, encoding a 193 residue polypeptide of molecular weight 20 kDa and calculated pI 8.48. A TaERF4-GFP fusion protein localized preferentially to the nuclei of Arabidopsis thaliana protoplasts. TaERF4 is a member of the B-1 group within the ERF sub-family and was not transactivatable in yeast. The presence of an ERF-associated amphiphilic repression (EAR) motif at its C-terminus suggests that TaERF4 is probably a transcription repressor. TaERF4 was inducible by exposure to salinity and osmotic stresses, but not to exogenously supplied abscisic acid (ABA). The heterologous constitutive expression of TaERF4 in Arabidopsis enhanced the level of sensitivity to salinity stress, possibly via the repression of tonoplast Na(+)/H(+) antiporter activity. There was no phenotype associated with the transgene's presence when plants were subjected to either osmotic stress or ABA treatment. TaERF4 appears to be a transcription repressor acting within the ABA-independent response to salinity stress.


Asunto(s)
Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Factores de Transcripción/aislamiento & purificación , Triticum/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes de Plantas , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA