Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 40(1): 11-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950620

RESUMEN

Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.


Asunto(s)
Neoplasias del Colon , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias del Colon/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas de Unión al Calcio/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo
2.
Exp Ther Med ; 22(6): 1465, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34737805

RESUMEN

Cisplatin (DDP) resistance is one of the main causes of treatment failure in patients with colon cancer (CC). Autophagy is a key mechanism of resistance to chemotherapy. Since autophagy-related 7 (ATG7) has been reported to be involved in the regulation of autophagy and DDP resistance for lung and esophageal cancer, the present study aimed to explore the functions of microRNA (miR)-4486 in the autophagy-mediated DDP resistance of CC. The expression level of miR-4486 in HCT116, DDP-resistant HCT116 cells (HCT116/DDP), SW480 and DDP-resistant SW480 cells (SW480/DDP) was quantified by reverse transcription-quantitative PCR. Western blotting was utilized to analyze the expression of ATG7, autophagy-related proteins Beclin 1 and LC3-I/II, as well as apoptosis-related proteins Bcl-2, Bax and cleaved-caspase 3 in HCT116/DDP and SW480/DDP cells. The half maximal inhibitory concentration of DDP on all cell lines and the cell viability of HCT116/DDP and SW480/DDP cells were measured using Cell Counting Kit 8 assay. Luciferase assay was used to examine the potential targets of miR-4486 and ATG7. The effects of upregulating mimic miR-4486 expression on the apoptosis and autophagy of HCT116/DDP and SW480/DDP cells were determined by flow cytometry and electron microscopy, respectively. It was found that miR-4486 expression was significantly decreased in HCT116/DDP and SW480/DDP cells compared with that in HCT116 and SW480 cells. Overexpression of miR-4486 could increase the sensitivity of HCT116/DDP and SW480/DDP cells to DDP by reducing cell viability, promoting apoptosis and inhibiting autophagy through downregulating Beclin 1 expression and the LC3-II/LC3-I ratio. Additionally, ATG7 was identified to be a target gene of miR-4486, where ATG7 overexpression could partially reverse the effects of miR-4486 on cell viability and apoptosis by promoting the formation of autophagosomes. In conclusion, the present results demonstrated that miR-4486 could reverse DDP resistance in HCT116/DDP and SW480/DDP cells by targeting ATG7 to inhibit autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA