Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675297

RESUMEN

In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Humanos , Material Particulado/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/inducido químicamente , Carcinógenos , Daño del ADN , Contaminantes Atmosféricos/toxicidad
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216341

RESUMEN

Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH-DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH-DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA-RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Material Particulado/efectos adversos , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Células A549 , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232418

RESUMEN

The Hispanic population, compared with other ethnic groups, presents a more aggressive gastric cancer phenotype with higher frequency of diffuse-type gastric adenocarcinoma (GA); this could be related to the mutational landscape of GA in these patients. Using whole-exome sequencing, we sought to present the mutational landscape of GA from 50 Mexican patients who were treated at The Instituto Nacional de Cancerología from 2019 to 2020. We performed a comprehensive statistical analysis to explore the relationship of the genomic variants and clinical data such as tumor histology and presence of signet-ring cell, H. pylori, and EBV. We describe a potentially different mutational landscape between diffuse and intestinal GA in Mexican patients. Patients with intestinal-type GA tended to present a higher frequency of NOTCH1 mutations, copy number gains in cytobands 13.14, 10q23.33, and 12q25.1, and copy number losses in cytobands 7p12, 14q24.2, and 11q13.1; whereas patients with diffuse-type GA tended to present a high frequency of CDH1 mutations and CNV gains in cytobands 20q13.33 and 22q11.21. This is the first description of a mutational landscape of GA in Mexican patients to better understand tumorigenesis in Hispanic patients and lay the groundwork for discovering potential biomarkers and therapeutic targets.


Asunto(s)
Adenocarcinoma , Helicobacter pylori , Neoplasias Gástricas , Adenocarcinoma/genética , Antígenos CD/genética , Cadherinas/genética , Helicobacter pylori/genética , Humanos , Mutación , Neoplasias Gástricas/patología , Secuenciación del Exoma
4.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884446

RESUMEN

Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 µm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial-mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-ß), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (α-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Material Particulado/efectos adversos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Modelos Biológicos , Invasividad Neoplásica , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Regulación hacia Arriba
5.
Sci Total Environ ; 926: 171933, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522535

RESUMEN

Air pollution is a worldwide environmental problem with an impact on human health. Particulate matter of ten micrometers or less aerodynamic diameter (PM10) as well as its fine fraction (PM2.5) is related to multiple pulmonary diseases. The impact of air pollution in Mexico City, and importantly, particulate matter has been studied and considered as a risk factor for two decades ago. Previous studies have reported the composition of Mexico City particulate matter, as well as the biological effects induced by this material. However, material collected and used in previous studies is a limited resource, and sampling and particle recovery techniques have been improved. In this study, we describe the methods used in our laboratory for Mexico City airborne particulate matter PM10 and PM2.5 sampling, considering the years 2017, 2018 and 2019. We also analyzed the PM10 and PM2.5 samples obtained to determine their composition. Finally, we exposed lung cell line cultures to PM10 and PM2.5 to evaluate the biological effect of the material in terms of cell viability, cell death, inflammatory response, and cytogenetic alterations. Our results showed that PM10 composition includes inorganic, organic and biological compounds, while PM2.5 is a mixture of more enriched organic compounds. PM10 and PM2.5 treatment in lung cells does not significantly impact cell viability/cell death. However, PM10 and PM2.5 increase the secretion levels of IL-6. Moreover, PM10 as well as PM2.5 induce cytogenetic alterations, such as micronuclei, anaphase bridges, trinucleated cells and apoptotic cells in lung cells. Our results update the evidence of the composition and biological effects of Mexico City particulate matter and provide us a reliable basis for future approaches.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , México , Contaminación del Aire/análisis , Ciudades , Tamaño de la Partícula
6.
Toxicology ; 478: 153280, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35973603

RESUMEN

Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 µg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.


Asunto(s)
Nanopartículas , Titanio , Animales , Colon , Aditivos Alimentarios/toxicidad , Humanos , Ratones , Nanopartículas/toxicidad , Titanio/toxicidad
7.
Environ Pollut ; 287: 117313, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34022687

RESUMEN

Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Daño del ADN , Reparación del ADN , Humanos , Estrés Oxidativo , Material Particulado/análisis , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad
8.
Environ Pollut ; 241: 351-358, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29852438

RESUMEN

Particulate matter (PM) is an environmental pollutant that has been associated with an increased risk for lung cancer. PM exposure induces cellular alterations and the deregulation of cell signaling pathways. However other mechanisms such as microRNAs deregulation, might be involved in the development and progression of some types of epithelial cancer. The aim of this work was to evaluate miRNA expression in epithelial lung cells after exposure to PM10 and to identify the possible gene targets of deregulated miRNAs. We measured the expression of 2538 miRNAs using a microarray platform after 72 h of PM10 exposure; the potential biological function was inferred with bioinformatics analysis and we validated the relative expression of 10 selected miRNAs with real-time PCR. We found that the expression of 74 miRNAs was significantly changed: 45 miRNAs were downregulated and were involved in proliferation, cell cycle, cytoskeleton modification and autophagy; meanwhile, 29 miRNAs related to apoptosis, DNA damage repair and xenobiotic metabolism were upregulated.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Neoplasias Pulmonares/metabolismo , Pulmón/fisiología , MicroARNs/metabolismo , Material Particulado/toxicidad , Contaminantes Atmosféricos/metabolismo , Apoptosis , Ciclo Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/metabolismo , Transducción de Señal/efectos de los fármacos , Pruebas de Toxicidad , Regulación hacia Arriba
9.
Environ Pollut ; 229: 412-422, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28622661

RESUMEN

In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Carcinogénesis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Neoplasias Pulmonares/epidemiología , Material Particulado/toxicidad , Carcinógenos , Inestabilidad Genómica , Humanos , Pulmón/efectos de los fármacos , Neoplasias , Factores de Riesgo , Fumar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA