Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cogn Affect Behav Neurosci ; 23(5): 1322-1345, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37526901

RESUMEN

While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction. Motion-selective visual area V5/MT+ sits, both functionally and anatomically, at the nexus of dorsal and ventral visual streams. These pathways, however, differ in how they are modulated by emotional cues. The current study was designed to disentangle how emotion and motion perception interact, as well as use emotion-dependent modulation of visual cortices to understand the relation of V5/MT+ to canonical processing streams. During functional magnetic resonance imaging (fMRI), approaching, receding, or static motion after-effects (MAEs) were induced on stationary positive, negative, and neutral stimuli. An independent localizer scan was conducted to identify the visual-motion area V5/MT+. Through univariate and multivariate analyses, we demonstrated that emotion representations in V5/MT+ share a more similar response profile to that observed in ventral visual than dorsal, visual structures. Specifically, V5/MT+ and ventral structures were sensitive to the emotional content of visual stimuli, whereas dorsal visual structures were not. Overall, this work highlights the critical role of V5/MT+ in the representation and processing of visually acquired emotional content. It further suggests a role for this region in utilizing affectively salient visual information to augment motion perception of biologically relevant stimuli.


Asunto(s)
Percepción de Movimiento , Corteza Visual , Humanos , Percepción de Movimiento/fisiología , Imagen por Resonancia Magnética/métodos , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Emociones , Felicidad , Estimulación Luminosa/métodos , Vías Visuales/fisiología
2.
Exp Brain Res ; 239(3): 835-846, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33403432

RESUMEN

Although visual feedback of the hand allows fast and accurate grasping actions, little is known about whether the nature of feedback of the hand affects performance. We investigated kinematics during precision grasping (with the index finger and thumb) when participants received different levels of hand feedback, with or without visual feedback of the target. Specifically, we compared performance when participants saw (1) no hand feedback; (2) only the two critical points on the index finger and thumb tips; (3) 21 points on all digit tips and hand joints; (4) 21 points connected by a "skeleton", or (5) full feedback of the hand wearing a glove. When less hand feedback was available, participants took longer to execute the movement because they allowed more time to slow the reach and close the hand. When target feedback was unavailable, participants took longer to plan the movement and reached with higher velocity. We were particularly interested in investigating maximum grip aperture (MGA), which can reflect the margin of error that participants allow to compensate for uncertainty. A trend suggested that MGA was smallest when ample feedback was available (skeleton and full hand feedback, regardless of target feedback) and when only essential information about hand and target was provided (2-point hand feedback + target feedback) but increased when non-essential points were included (21-point feedback). These results suggest that visual feedback of the hand affects grasping performance and that, while more feedback is usually beneficial, this is not necessarily always the case.


Asunto(s)
Fuerza de la Mano , Retroalimentación , Retroalimentación Sensorial , Mano , Humanos , Movimiento , Desempeño Psicomotor
3.
J Vis ; 21(10): 21, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581767

RESUMEN

Although the familiar size of real-world objects affects size and distance perception, evidence is mixed about whether this is the case when oculomotor cues are available. We examined the familiar size effect (FSE) on both size and distance perception for real objects under two viewing conditions with full or restricted oculomotor cues (binocular viewing, which provides vergence and accommodation cues, and monocular viewing through a 1-mm pinhole, which removes those cues). Familiar objects (a playing die versus a Rubik's cube) were manufactured in their typical (1.6-cm die and 5.7-cm Rubik's cube) and reverse (5.7-cm die and 1.6-cm Rubik's cube) sizes and shown at two distances (25 cm versus 91 cm) in isolation. Small near and large far objects subtended equal retinal angles. Participants provided manual estimates of perceived size and distance. For every combination of size and distance, Rubik's cubes were perceived as larger and farther than the dice, even during binocular viewing at near distances (<1 meter), when oculomotor cues are particularly strong. For size perception but not distance perception, the familiar size effect was significantly stronger under monocular pinhole viewing than binocular viewing. These results suggest that (1) familiar size affects the accuracy of perception, not just the speed; (2) the effect occurs even when oculomotor cues are available; and (3) size and distance perception are not perfectly yoked.


Asunto(s)
Percepción de Distancia , Visión Binocular , Acomodación Ocular , Señales (Psicología) , Percepción de Profundidad , Movimientos Oculares , Humanos , Percepción del Tamaño
4.
J Neurosci ; 30(31): 10306-23, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20685975

RESUMEN

Picking up a cup requires transporting the arm to the cup (transport component) and preshaping the hand appropriately to grasp the handle (grip component). Here, we used functional magnetic resonance imaging to examine the human neural substrates of the transport component and its relationship with the grip component. Participants were shown three-dimensional objects placed either at a near location, adjacent to the hand, or at a far location, within reach but not adjacent to the hand. Participants performed three tasks at each location as follows: (1) touching the object with the knuckles of the right hand; (2) grasping the object with the right hand; or (3) passively viewing the object. The transport component was manipulated by positioning the object in the far versus the near location. The grip component was manipulated by asking participants to grasp the object versus touching it. For the first time, we have identified the neural substrates of the transport component, which include the superior parieto-occipital cortex and the rostral superior parietal lobule. Consistent with past studies, we found specialization for the grip component in bilateral anterior intraparietal sulcus and left ventral premotor cortex; now, however, we also find activity for the grasp even when no transport is involved. In addition to finding areas specialized for the transport and grip components in parietal cortex, we found an integration of the two components in dorsal premotor cortex and supplementary motor areas, two regions that may be important for the coordination of reach and grasp.


Asunto(s)
Brazo/fisiología , Fuerza de la Mano/fisiología , Movimiento/fisiología , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Adulto , Análisis de Varianza , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología
5.
Exp Brain Res ; 202(1): 15-32, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19967391

RESUMEN

Ren et al. (J Neurophysiol 96:1464-1477, 2006) found that saccades to visual targets became less accurate when somatosensory information about hand location was added, suggesting that saccades rely mainly on vision. We conducted two kinematic experiments to examine whether or not reaching movements would also show such strong reliance on vision. In Experiment 1, subjects used their dominant right hand to perform reaches, with or without a delay, to an external visual target or to their own left fingertip positioned either by the experimenter or by the participant. Unlike saccades, reaches became more accurate and precise when proprioceptive information was available. In Experiment 2, subjects reached toward external or bodily targets with differing amounts of visual information. Proprioception improved performance only when vision was limited. These results indicate that the reaching system has a better internal model for limb positions than does the saccade system.


Asunto(s)
Actividad Motora , Propiocepción , Desempeño Psicomotor , Percepción Visual , Adulto , Fenómenos Biomecánicos , Femenino , Lateralidad Funcional , Mano , Humanos , Masculino , Memoria , Actividad Motora/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Psicofísica , Factores de Tiempo , Adulto Joven
6.
Neuropsychologia ; 128: 150-165, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29753019

RESUMEN

Patients with injury to early visual cortex or its inputs can display the Riddoch phenomenon: preserved awareness for moving but not stationary stimuli. We provide a detailed case report of a patient with the Riddoch phenomenon, MC. MC has extensive bilateral lesions to occipitotemporal cortex that include most early visual cortex and complete blindness in visual field perimetry testing with static targets. Nevertheless, she shows a remarkably robust preserved ability to perceive motion, enabling her to navigate through cluttered environments and perform actions like catching moving balls. Comparisons of MC's structural magnetic resonance imaging (MRI) data to a probabilistic atlas based on controls reveals that MC's lesions encompass the posterior, lateral, and ventral early visual cortex bilaterally (V1, V2, V3A/B, LO1/2, TO1/2, hV4 and VO1 in both hemispheres) as well as more extensive damage to right parietal (inferior parietal lobule) and left ventral occipitotemporal cortex (VO1, PHC1/2). She shows some sparing of anterior occipital cortex, which may account for her ability to see moving targets beyond ~15 degrees eccentricity during perimetry. Most strikingly, functional and structural MRI revealed robust and reliable spared functionality of the middle temporal motion complex (MT+) bilaterally. Moreover, consistent with her preserved ability to discriminate motion direction in psychophysical testing, MC also shows direction-selective adaptation in MT+. A variety of tests did not enable us to discern whether input to MT+ was driven by her spared anterior occipital cortex or subcortical inputs. Nevertheless, MC shows rich motion perception despite profoundly impaired static and form vision, combined with clear preservation of activation in MT+, thus supporting the role of MT+ in the Riddoch phenomenon.


Asunto(s)
Ceguera Cortical/diagnóstico por imagen , Ceguera Cortical/psicología , Percepción de Movimiento , Corteza Visual/patología , Mapeo Encefálico , Infarto Cerebral/patología , Infarto Cerebral/psicología , Sensibilidad de Contraste , Discriminación en Psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neuroimagen , Psicofísica , Percepción Visual
7.
Cortex ; 98: 34-48, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431740

RESUMEN

In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Retroalimentación Sensorial/fisiología , Fuerza de la Mano/fisiología , Desempeño Psicomotor/fisiología , Adulto , Encéfalo/fisiología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA