Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biotechnol ; 23(1): 54, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102630

RESUMEN

BACKGROUND: Probiotics are viable microorganisms that when administered in adequate amounts confer health benefits to the host. In fish, probiotic administration has improved growth, and immunological parameters. For this reason, it is necessary production of probiotic bacteria, however, commercial culture mediums used for probiotic growth are expensive, so the design of a "low" cost culture medium is necessary. Therefore, this research aimed to produce a potential multistrain probiotic preparation composed of L. lactis A12 and Priestia species isolated from Nile tilapia (Oreochromis niloticus) gut using an agro-industrial by-products-based culture medium. RESULTS: A Box-Behnken design with three factors (whey, molasses, and yeast extract concentration) was used. As the main results, a high concentration of three components enhanced the viability of L. lactis A12, however, viable cell counts of Priestia species were achieved at low molasses concentrations. The Optimal conditions were 1.00% w/v whey, 0.50% w/v molasses, and 1.50% w/v yeast extract. L. lactis A12 and Priestia species viable counts were 9.43 and 6.89 Log10 CFU/mL, respectively. L. lactis A12 concentration was higher (p < 0.05) in the proposed medium compared to commercial broth. CONCLUSIONS: It was possible to produce L. lactis A12 and Priestia species in co-culture conditions. Whey and molasses were suitable components to produce the multistrain preparation. The cost of the proposed culture medium was 77.54% cheaper than the commercial medium. The proposed culture medium could be an alternative to commercial mediums for the production of this multistrain probiotic.


Asunto(s)
Probióticos , Suero Lácteo , Animales , Técnicas de Cocultivo , Proteína de Suero de Leche , Fermentación
2.
Heliyon ; 10(11): e32150, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38873677

RESUMEN

Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.

3.
Sci Rep ; 14(1): 17955, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095475

RESUMEN

Probiotic production in commercial culture media is expensive, so, it is necessary to design culture media based on "low-cost" components like agro-industrial by-products. Therefore, this study aimed to design an agro-industrial by-product-based culture media using whey, sugarcane molasses, and palm kernel cake as components to produce Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10 isolated from Nile tilapia (Oreochromis niloticus) associated gut microbiota. Higher bacterial concentrations were achieved at high whey concentrations and low concentrations of sugarcane molasses and palm kernel cake (PKC) using agitation. The optimal conditions were whey, 3.84% w/v; sugarcane molasses, 7.39% w/v; PKC, 0.77% w/v; and agitation speed, 75 RPM. Bacterial growth under optimal conditions was compared to that in commercial Brain-Heart Infusion (BHI) broth. L. lactis A12 showed similar growth in the optimal media and BHI. The estimated cost of the culture media based on component prices was USD $ 3.01/L, which is 86.93% lower than BHI broth (USD $ 23.04/L). It was possible to design a "low-cost agro-industrial by-product-based culture media to produce L. lactis A12 and the two Priestia species under monoculture conditions.


Asunto(s)
Medios de Cultivo , Probióticos , Probióticos/metabolismo , Animales , Medios de Cultivo/química , Lactococcus lactis/metabolismo , Lactococcus lactis/crecimiento & desarrollo , Suero Lácteo/microbiología , Suero Lácteo/metabolismo , Cíclidos/microbiología , Cíclidos/metabolismo , Cíclidos/crecimiento & desarrollo , Microbioma Gastrointestinal , Melaza , Alimentación Animal , Saccharum
4.
Animals (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998093

RESUMEN

Probiotics face harsh conditions during their transit through the gastrointestinal tract (GIT) of fish because of low-pH environments and intestine fluid. Therefore, the evaluation of probiotic viability under simulated gastrointestinal conditions is an important step to consider for probiotic supplementation in fish feed prior to in vivo trials. Therefore, this study aimed to evaluate the effect of stomach and intestinal simulated conditions on the viability of encapsulated Lactococcus lactis A12 using an in vitro digestion model for tilapia. A Box Behnken design was used to evaluate the potential effect of three factors, namely stomach pH, residence time in the stomach, and enzyme quantity, on the viability of encapsulated Lactococcus lactis A12. As the main results, low pH (4.00), long residence time (4 h), and enzyme quantity (2.68 U of total protease activity) led to lower final cell counts after the phases of the stomach and intestine. Encapsulated probiotic bacteria showed higher viability (p < 0.05) and antibacterial activity (p < 0.05) against the pathogen Streptococcus agalactiae than non-encapsulated bacteria. The results suggest that L. lactis A12 survives in GIT conditions and that the proposed in vitro model could be used to explore the viability of probiotic bacteria intended for fish feed supplementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA