Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Lipid Res ; 60(5): 1020-1031, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30894461

RESUMEN

Bis(monoacylglycerol)phosphate (BMP) is a phospholipid that is crucial for lipid degradation and sorting in acidic organelles. Genetic and drug-induced lysosomal storage disorders (LSDs) are associated with increased BMP concentrations in tissues and in the circulation. Data on BMP in disorders other than LSDs, however, are scarce, and key enzymes regulating BMP metabolism remain elusive. Here, we demonstrate that common metabolic disorders and the intracellular BMP hydrolase α/ß-hydrolase domain-containing 6 (ABHD6) affect BMP metabolism in mice and humans. In mice, dietary lipid overload strongly affects BMP concentration and FA composition in the liver and plasma, similar to what has been observed in LSDs. Notably, distinct changes in the BMP FA profile enable a clear distinction between lipid overload and drug-induced LSDs. Global deletion of ABHD6 increases circulating BMP concentrations but does not cause LSDs. In humans, nonalcoholic fatty liver disease and liver cirrhosis affect the serum BMP FA composition and concentration. Furthermore, we identified a patient with a loss-of-function mutation in the ABHD6 gene, leading to an altered circulating BMP profile. In conclusion, our results suggest that common metabolic diseases and ABHD6 affect BMP metabolism in mice and humans.


Asunto(s)
Lisofosfolípidos/metabolismo , Enfermedades Metabólicas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Lisofosfolípidos/sangre , Masculino , Enfermedades Metabólicas/sangre , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/genética , Monoglicéridos/sangre , Fenotipo
2.
Molecules ; 22(10)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994710

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is associated with the aggregation of the amyloid ß protein (Aß). Aß oligomers are currently thought to be the major neurotoxic agent responsible for disease development and progression. Thus, their elimination is highly desirable for therapy development. Our therapeutic approach aims at specific and direct elimination of toxic Aß oligomers by stabilizing Aß monomers in an aggregation-incompetent conformation. We have proven that our lead compound "D3", an all d-enantiomeric-peptide, specifically eliminates Aß oligomers in vitro. In vivo, D3 enhances cognition and reduces plaque load in several transgenic AD mouse models. Here, we performed a large-scale oral proof of concept efficacy study, in which we directly compared four of the most promising D3-derivatives in transgenic mice expressing human amyloid precursor protein with Swedish and London mutations (APPSL), transgenic mice, to identify the most effective compound. RD2 and D3D3, both derived from D3 by rational design, were discovered to be the most effective derivatives in improving cognition in the Morris water maze. The performance of RD2- and D3D3-treated mice within the Morris water maze was significantly better than placebo-treated mice and, importantly, nearly as good as those of non-transgenic littermates, suggesting a complete reversal of the cognitive deficit of APPSL mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Oligopéptidos/uso terapéutico , Administración Oral , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Femenino , Humanos , Ratones Transgénicos , Estructura Molecular , Placa Amiloide/metabolismo , Prueba de Estudio Conceptual , Agregación Patológica de Proteínas/metabolismo , Estereoisomerismo
3.
BMC Neurosci ; 14: 6, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23302418

RESUMEN

BACKGROUND: Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-ß human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age. RESULTS: These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus. CONCLUSION: The present study demonstrates that the PDGF-ß α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de Filamentos Intermediarios/metabolismo , Trastornos del Movimiento/genética , Trastornos del Movimiento/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Proteínas de Filamentos Intermediarios/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Crecimiento Derivado de Plaquetas/genética , Factores de Tiempo
4.
Front Neurosci ; 17: 1087788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065917

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology. Methods: The GABA B receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3 tf /J and B6.129P2-Fmr1 tm1Cgr /J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests. Results: BTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice's ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice. Conclusion: Our results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.

5.
Front Mol Neurosci ; 14: 681868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248499

RESUMEN

Amyotrophic lateral sclerosis (ALS) still depicts an incurable and devastating disease. Drug development efforts are mostly based on superoxide dismutase 1 gene (SOD1)-G93A mice that present a very strong and early phenotype, allowing only a short time window for intervention. An alternative mouse model is available, that is based on the same founder line but has a reduced SOD1-G93A copy number, resulting in a weaker and delayed phenotype. To be able to use these SOD1-G93A/low mice for drug testing, we performed a characterization of ALS-typical pathologies. All analyses were performed compared to non-transgenic (ntg) littermates of the same sex and age. In vivo analysis of SOD1-G93A/low mice was performed by weekly body weight measurements, analysis of the survival rate, and measurement of the muscle strength of 24-30 weeks old female and male SOD1-G93A/low mice. Immunofluorescent labeling of SOD1, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba1) protein was performed in the cervical, thoracic, and lumbar ventral horn of the spinal cord of 24-30 weeks old male and female SOD1-G93A/low mice. The musculus gastrocnemius of male SOD1-G93A/low mice was labeled with fluorophore-conjugated α-bungarotoxin and antibodies against phosphorylated neurofilaments. Fluorescent labeling was detected and quantified by macro-based image analysis. Although SOD1 protein levels were highly increased in both sexes and all age groups, levels strongly peaked in 30 weeks old male SOD1-G93A/low mice. Astrocytosis and activated microglia in the spinal cord ventral horn and phosphorylated neurofilaments in the motor unit of the musculus gastrocnemius progressively increased, while muscle strength progressively decreased in male SOD1-G93A/low mice. In female SOD1-G93A/low mice, only activated microglia increased progressively, while muscle strength was constantly reduced starting at 26 weeks. These differences result in a shorter survival time of male SOD1-G93A/low mice of about 3 weeks compared to female animals. The results suggest that male SOD1-G93A/low mice present a stronger pathology and are, therefore, better suitable to evaluate the efficacy of new drugs against ALS as most pathological features are developing progressively paralleled by a survival time that allows treatment to start before symptom onset.

6.
Heliyon ; 5(3): e01293, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30923761

RESUMEN

Niemann-Pick type C disease (NPC) is a fatal autosomal recessive disorder characterized by a defect in the intracellular transport of lipoproteins leading to the accumulation of lipids in diverse tissues. A visceral and neuronal phenotype mimicking human NPC1 disease has been described in NPC1 mutant mice. These mice are by now the most widely used NPC1 rodent model to study NPC and developmental compounds against this devastating disease. Here we characterized NPC1-/- mice for their hepatic and neuronal phenotype to confirm the stability of the phenotype, provide a characterization of disease progression and pinpoint the age of robust phenotype onset. Animals of 4-10 weeks of age were analyzed for general health, motor deficits as well as hepatic and neuronal alterations with a special focus on cerebellar pathology. Our results show that NPC1-/- mice have a reduced general health at the age of 9-10 weeks. Robust motor deficits can be observed even earlier at 8 weeks of age. Hepatic changes included increased organ weight and cholesterol levels at 6 weeks of age accompanied by severely increased liver enzyme levels. Analysis of NPC1-/- brain pathology showed decreased cholesterol and increased Aß levels in the hippocampus at the age of 6 weeks. Further analysis revealed a decrease of the cytokine IL-12p70 in the cerebellum along with a very early increase of astrocytosis. Hippocampal IL-12p70 levels were increased at the age of 6 weeks followed by increased activated microglia levels. By the age of 10 weeks, also cerebellar Aß levels were increased along with strongly reduced Calbindin D-28k levels. Our results validate and summarize the progressive development of the hepatic and neuronal phenotype of NPC1-/- mice that starts with cerebellar astrocytosis, making this mouse model a valuable tool for the development of new compounds against NPC.

7.
PLoS One ; 13(5): e0197674, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29787578

RESUMEN

Transgenic mouse models are indispensable tools to mimic human diseases and analyze the effectiveness of related new drugs. For a long time amyotrophic lateral sclerosis (ALS) research depended on only a few mouse models that exhibit a very strong and early phenotype, e.g. SOD1 mice, resulting in a short treatment time window. By now, several models are available that need to be characterized to highlight characteristics of each model. Here we further characterized the mThy1-hTDP-43 transgenic mouse model TAR6/6 that overexpresses wild type human TARDBP, also called TDP-43, under control of the neuronal Thy-1 promoter presented by Wils and colleagues, 2010, by using biochemical, histological and behavioral readouts. Our results show that TAR6/6 mice exhibit a strong TDP-43 expression in the hippocampus, spinal cord, hypothalamus and medulla oblongata. Apart from prominent protein expression in the nucleus, TDP-43 protein was found at lower levels in the cytosol of transgenic mice. Additionally, we detected insoluble TDP-43 in the cortex, motoneuron loss, and increased neuroinflammation in the central nervous system of TAR6/6 animals. Behavioral analyses revealed early motor deficits in the clasping- and wire suspension test as well as decreased anxiety in the elevated plus maze. Further motor tests showed differences at later time points compared to non-transgenic littermates, thus allowing the observation of onset and severity of such deficits. Together, TAR6/6 mice are a valuable tool to test new ALS/FTLD drugs that target TDP-43 expression and insolubility, neuroinflammation, motoneuron loss or other TDP-43 related downstream signaling pathways since these mice exhibit a later pathology as previously used ALS/FTLD mouse models.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Monoéster Fosfórico Hidrolasas/genética , Regulación hacia Arriba , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/fisiopatología , Hipocampo/metabolismo , Humanos , Hipotálamo/metabolismo , Bulbo Raquídeo/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Regiones Promotoras Genéticas , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA