Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 116(3): 187-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26194162

RESUMEN

The recessive wellhaarig (we) mutations, named for the wavy coat and curly whiskers they generate in homozygotes, have previously been mapped on mouse Chromosome 2. To further limit the possible location of the we locus, we crossed hybrid (C57BL/6×AKR)F1, we(4J)/+ females with AKR, we(4J)/we(4J) mutant males to create a large backcross family that was typed for various microsatellite markers and single-nucleotide polymorphisms (SNPs) that distinguish strains AKR and B6. This analysis restricted the location of we(4J) between sites that flank only one gene known to be expressed in skin: epidermal-type transglutaminase 3 (Tgm3). To test Tgm3 as a candidate for the basis of the wellhaarig phenotype we took two approaches. First, we sequenced all Tgm3 coding regions in mice homozygous for four independent, naturally-occurring wellhaarig alleles (we, we(Bkr), we(3J) and we(4J)) and found distinct defects in three of these mutants. Second, we crossed mice homozygous for an induced mutant allele of Tgm3 (Tgm3(Btlr)) with mice heterozygous for one of the wellhaarig alleles we possess (we(4J) or we(Bkr)) to test for complementation. Because the progeny inheriting both a recessive we allele and a recessive Tgm3(Btlr) allele displayed wavy hair, we conclude that the classic wellhaarig mutations result from defects in Tgm3.


Asunto(s)
Epidermis/enzimología , Mutación , Transglutaminasas/genética , Alelos , Animales , Mapeo Cromosómico , Femenino , Prueba de Complementación Genética , Cabello , Heterocigoto , Homocigoto , Masculino , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple
2.
BMC Genet ; 14: 40, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23659281

RESUMEN

BACKGROUND: Mice homozygous for the juvenile alopecia mutation (jal) display patches of hair loss that appear as soon as hair develops in the neonatal period and persist throughout life. Although a report initially describing this mouse variant suggested that jal maps to mouse Chromosome 13, our preliminary mapping analysis did not support that claim. RESULTS: To map jal to a particular mouse chromosome, we produced a 103-member intraspecific backcross panel that segregated for jal, and typed it for 93 PCR-scorable, microsatellite markers that are located throughout the mouse genome. Only markers from the centromeric tip of Chromosome 2 failed to segregate independently from jal, suggesting that jal resides in that region. To more precisely define jal's location, we characterized a second, 374-member backcross panel for the inheritance of five microsatellite markers from proximal Chromosome 2. This analysis restricted jal's position between D2Mit359 and D2Mit80, an interval that includes Il2ra (for interleukin 2 receptor, alpha chain), a gene that is known to be associated with alopecia areata in humans. Complementation testing with an engineered null allele of Il2ra, however, showed that jal is a mutation in a distinct gene. To further refine the location of jal, the 374-member panel was typed for a set of four single-nucleotide markers located between D2Mit359 and D2Mit80, identifying a 0.55 Mb interval where jal must lie. This span includes ten genes-only one of which, Gata3 (for GATA binding protein 3)-is known to be expressed in skin. Complementation testing between jal and a Gata3 null allele produced doubly heterozygous, phenotypically mutant offspring. CONCLUSIONS: The results presented indicate that the jal mutation is a mutant allele of the Gata3 gene on mouse Chromosome 2. We therefore recommend that the jal designation be changed to Gata3jal, and suggest that this mouse variant may provide an animal model for at least some forms of focal alopecia that have their primary defect in the hair follicle and lack an inflammatory component.


Asunto(s)
Alelos , Alopecia/genética , Mapeo Cromosómico , Factor de Transcripción GATA3/genética , Mutación , Animales , Secuencia de Bases , Cartilla de ADN , Prueba de Complementación Genética , Subunidad alfa del Receptor de Interleucina-2/genética , Ratones , Ratones Endogámicos , Reacción en Cadena de la Polimerasa
3.
Mol Genet Metab Rep ; 1: 378-390, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25264521

RESUMEN

Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg) and frizzy (fr) mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat), revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein). Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, rhg/+, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates) consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR) in humans, which is also caused by the substitution of glycine 353 in some families.

4.
BMC Res Notes ; 6: 189, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23656696

RESUMEN

BACKGROUND: Mice homozygous for the spontaneous wooly mutation (abbreviated wly) are recognized as early as 3-4 weeks of age by the rough or matted appearance of their coats. Previous genetic analysis has placed wly in a 5.9 Mb interval on Chromosome 11 that contains over 200 known genes. Assignment of wly to one of these genes is needed in order to provide probes that would ultimately facilitate a complete molecular analysis of that gene's role in the normal and disrupted development of the mammalian integument. RESULTS: Here, a large intraspecific backcross family was used to genetically map wly to a smaller (0.8 Mb) span on mouse Chromosome 11 that includes fewer than 20 genes. DNA sequencing of the coding regions in two of these candidates known to be expressed in skin has revealed a 955 bp, wly-specific deletion. This deletion, which lies within the coordinates of both Slc5a10 [for solute carrier family 5 (sodium/glucose cotransporter), member 10] and Fam83g (for family with sequence similarity 83, member G), alters the splicing of mutant Fam83g transcripts only, and is predicted to result in a severely truncated (probably non-functional) protein product. CONCLUSION: We suggest that this mutation in Fam83g is the likely basis of the mouse wooly phenotype.


Asunto(s)
Mapeo Cromosómico , Mutación , Proteínas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cruzamientos Genéticos , Cartilla de ADN , Meiosis/genética , Ratones , Sondas Moleculares , Datos de Secuencia Molecular , Fenotipo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA