Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Physiol ; 179(4): 1768-1778, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30723179

RESUMEN

The export of photosynthetically produced sugars from leaves depends on plasmodesmatal transport of sugar molecules from mesophyll to phloem. Traditionally, the density of plasmodesmata (PD) along this phloem-loading pathway has been used as a defining feature of different phloem-loading types, with species proposed to have either many or few PD between the phloem and surrounding cells of the leaf. However, quantitative determination of PD density has rarely been performed. Moreover, the structure of PD has not been considered, even though it could impact permeability, and functional data are only available for very few species. Here, a comparison of PD density, structure, and function using data from transmission electron microscopy and live-cell microscopy was conducted for all relevant cell-cell interfaces in leaves of nine species. These species represent the three principal phloem-loading types currently discussed in literature. Results show that relative PD density among the different cell-cell interfaces in one species, but not absolute PD density, is indicative of phloem-loading type. PD density data of single interfaces, even combined with PD diameter and length data, did not correlate with the intercellular diffusion capacity measured by the fluorescence loss in photobleaching method. This means that PD substructure not visible on standard transmission electron micrographs may have a strong influence on permeability. Furthermore, the results support a proposed passive symplasmic loading mechanism in the tree species horse chestnut (Aesculus hippocastanum), white birch (Betula pubescens), orchard apple (Malus domestica), and gray poplar (Populus x canescens) as functional cell coupling and PD structure differed from active symplasmic and apoplasmic phloem-loading species.


Asunto(s)
Aesculus/metabolismo , Betula/metabolismo , Malus/metabolismo , Plasmodesmos/fisiología , Azúcares/metabolismo , Aesculus/ultraestructura , Betula/ultraestructura , Transporte Biológico , Malus/ultraestructura , Microscopía Electrónica de Transmisión , Floema/metabolismo , Plasmodesmos/ultraestructura
2.
Phys Rev E ; 103(3-1): 033108, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862779

RESUMEN

We study the viscous dissipation in pipe flows in long channels with porous or semipermeable walls, taking into account both the dissipation in the bulk of the channel and in the pores. We give simple closed-form expressions for the dissipation in terms of the axially varying flow rate Q(x) and the pressure p(x), generalizing the well-known expression W[over ̇]=QΔp=RQ^{2} for the case of impenetrable walls with constant Q, pressure difference Δp between the ends of the pipe and resistance R. When the pressure p_{0} outside the pipe is constant, the result is the straightforward generalization W[over ̇]=Δ[(p-p_{0})Q]. Finally, applications to osmotic flows are considered.

4.
Phys Rev E ; 95(4-1): 042402, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505712

RESUMEN

Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants.


Asunto(s)
Transporte Biológico , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Azúcares/metabolismo , Tracheophyta/anatomía & histología , Tracheophyta/metabolismo , Transporte Biológico/fisiología , Modelos Biológicos , Ósmosis , Presión , Especificidad de la Especie , Árboles/anatomía & histología , Árboles/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-25375520

RESUMEN

Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the phloem.


Asunto(s)
Transporte Biológico/fisiología , Modelos Biológicos , Floema/fisiología , Metabolismo de los Hidratos de Carbono , Cucumis melo/fisiología , Difusión , Plasmodesmos/fisiología , Polímeros/metabolismo , Porosidad , Agua/metabolismo
6.
Micron ; 43(12): 1351-63, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22609099

RESUMEN

Mimicry of the tough natural composite nacre in future bioengineering requires knowledge of the biomineralisation process. The insoluble organic matrix isolated from the shell of the gastropod Haliotis laevigata was characterised by protein chemistry, topographical and mechanical measurements. Demineralisation of nacre in dilute acetic acid or ethylenediaminetetraacetic acid revealed a set of soluble proteins and the insoluble matrix. The insoluble matrix contains a chitin core and firmly attached proteins, which could be removed by sodium dodecyl sulfate and glycerol indicating a hydrophobic interaction. Atomic force microscopy images of the native insoluble matrix showed a filamentous network with pores or holes, where the filaments showed globular attachments of different sizes, possibly the attached protein molecules. During direct observation of protein degradation imaged by atomic force microscopy the insoluble matrix gets smooth and flat indicating the removal of the attached proteins by proteases. We propose a model of protein coated chitin filaments for the insoluble matrix of nacre. Mechanical measurements by force mapping revealed a Young's modulus depending on the hydration state of the organic layers. The fully hydrated organic matrix has an elastic modulus below 1 MPa comparable to some hydrogels.


Asunto(s)
Nácar/química , Nácar/metabolismo , Adsorción , Animales , Fenómenos Biomecánicos , Gastrópodos/química , Microscopía de Fuerza Atómica , Nácar/aislamiento & purificación , Proteínas/análisis
7.
Beilstein J Nanotechnol ; 2: 222-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21977434

RESUMEN

The natural composite nacre is characterised by astonishing mechanical properties, although the main constituent is a brittle mineral shaped as tablets interdispersed by organic layers. To mimic the natural formation process which takes place at ambient conditions an understanding of the mechanism responsible for a defined microstructure of nacre is necessary. Since proteins are assumed to be involved in this mechanism, it is advantageous to identify distinct proteins interacting with minerals from the totality of proteins contained in nacre. Here, we adopted and modified a recently published approach given by Suzuki et al. [1] that gives a hint of specific protein-mineral interactions. Synthesised aragonite or calcite microcrystals were incubated with a protein mixture extracted from nacre of Haliotis laevigata. After incubation the mineral phase was dissolved and investigated for attached proteins. The results give a hint of one protein that seems to bind specifically to aragonite and not to calcite. The presented protocol seems to be suitable to detect mineral binding proteins quickly and therefore can point to proteins whose mineral binding capabilities should be investigated further.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA