Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(4): 386-396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36892323

RESUMEN

Catalytic activity and function of acetylcholinesterase (AChE; EC 3.1.1.7) have been recognized and studied for over a century and its quaternary and primary structures for about half a century, and its tertiary structure has been known for about 33 years. Clear understanding of relationships between the structure and the function is still pending for this enzyme. Hundreds of crystallographic, static snapshots of AChEs from different sources reveal largely one general backbone conformation with narrow entry into the active center gorge, tightly fit to accept one acetylcholine (ACh) molecule, in contrast to its high catalytic turnover. This short review of available X-ray structures of AChEs from electric ray Torpedo californica, mouse and human, finds some limited, yet consistent deviations in conformations of selected secondary structure elements of AChE relevant for its function. The observed conformational diversity of the acyl pocket loop of AChE, unlike the large Ω-loop, appears consistent with structurally dynamic INS data and solution-based SAXS experiments to explain its dominant role in controlling the size of the active center gorge opening, as well as connectivity between the immediate surroundings of the buried active Ser, and catalytically relevant sites on the AChE surface.


Asunto(s)
Acetilcolinesterasa , Dolor , Animales , Ratones , Humanos , Dominio Catalítico , Acetilcolinesterasa/metabolismo , Sitios de Unión , Rayos X , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Cristalografía por Rayos X , Modelos Moleculares , Inhibidores de la Colinesterasa/química , Torpedo/metabolismo , Conformación Proteica
2.
Mar Drugs ; 22(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667766

RESUMEN

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Asunto(s)
Iminas , Toxinas Marinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinas/química , Toxinas Marinas/farmacología , Toxinas Marinas/toxicidad , Iminas/química , Iminas/farmacología , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/química , Relación Estructura-Actividad
3.
J Biol Chem ; 297(3): 101007, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34324828

RESUMEN

Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Organofosfatos/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Regulación Alostérica , Dominio Catalítico , Cromatografía en Gel , Microscopía por Crioelectrón , Dimerización , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Fosforilación , Dispersión del Ángulo Pequeño , Estereoisomerismo , Difracción de Rayos X
4.
J Biol Chem ; 295(13): 4079-4092, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32019865

RESUMEN

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes' nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)-inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, "smart" accelerated antidotes against OP toxicity.


Asunto(s)
Acetilcolinesterasa/química , Antídotos/química , Sistema Nervioso Central/efectos de los fármacos , Inhibidores de la Colinesterasa/química , Reactivadores de la Colinesterasa/química , Acetamidas/química , Acetamidas/uso terapéutico , Antídotos/síntesis química , Antídotos/uso terapéutico , Sistema Nervioso Central/enzimología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/síntesis química , Reactivadores de la Colinesterasa/uso terapéutico , Cristalografía por Rayos X , Humanos , Cinética , Organofosfatos/química , Organofosfatos/toxicidad , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad , Oximas/síntesis química , Oximas/química , Oximas/farmacología , Oximas/uso terapéutico , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
5.
J Neurochem ; 158(6): 1217-1222, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638151

RESUMEN

We detail here distinctive departures from lead classical cholinesterase re-activators, the pyridinium aldoximes, to achieve rapid CNS penetration and reactivation of AChE in the CNS (brain and spinal cord). Such reactivation is consistent with these non-canonical re-activators enhancing survival parameters in both mice and macaques following exposure to organophosphates. Thus, the ideal cholinesterase re-activator should show minimal toxicity, limited inhibitory activity in the absence of an organophosphate, and rapid CNS penetration, in addition to its nucleophilic potential at the target, the conjugated AChE active center. These are structural properties directed to reactivity profiles at the conjugated AChE active center, reinforced by the pharmacokinetic and tissue disposition properties of the re-activator leads. In the case of nicotinic acetylcholine receptor (nAChR) agonists and antagonists, with the many existing receptor subtypes in mammals, we prioritize subtype selectivity in their design. In contrast to nicotine and its analogues that react with panoply of AChR subtypes, the substituted di-2-picolyl amine pyrimidines possess distinctive ionization characteristics reflecting in selectivity for the orthosteric site at the α7 subtypes of receptor. Here, entry to the CNS should be prioritized for the therapeutic objectives of the nicotinic agent influencing aberrant CNS activity in development or in the sequence of CNS ageing (longevity) in mammals, along with general peripheral activities controlling inflammation.


Asunto(s)
Acetilcolinesterasa/química , Reactivadores de la Colinesterasa/química , Diseño de Fármacos , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Acetilcolinesterasa/metabolismo , Animales , Reactivadores de la Colinesterasa/metabolismo , Humanos , Ligandos , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Nicotínicos/metabolismo
6.
J Pharmacol Exp Ther ; 378(3): 315-321, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145064

RESUMEN

Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body. An ideal small-molecule antidote should access and be retained in primary target tissues-central nervous system (brain), skeletal muscle, and peripheral autonomic sites-for sufficient periods to reactivate AChE and prevent acute toxicity. We show here that we can markedly prolong the antidotal activity of zwitterionic antidotes by inhibiting P-glycoprotein (P-gp) transporters in the brain capillary and renal systems. We employ the P-gp inhibitor tariquidar as a reference compound and show that tissue and plasma levels of RS194B, a hydroxyl-imino acetamido alkylamine reactivator, are elevated and that plasma clearances are reduced. To examine the mechanism, identify the transporter, and establish the actions of a transport inhibitor, we compare the pharmacokinetic parameters in a P-glycoprotein knockout mouse strain and see dramatic enhancements of short-term plasma and tissue levels. Hence, repurposed transport inhibitors that are candidate or Food and Drug Administration-approved drugs, should enhance target tissue concentrations of the zwitterionic antidote through inhibition of both renal elimination and brain capillary extrusion. SIGNIFICANCE STATEMENT: We examine renal and brain capillary transporter inhibition as means for lowering dose and frequency of dosing of a blood-brain barrier permanent reactivating antidote, RS194B, an ionizable zwitterion. Through a small molecule, tariquidar, and gene knockout mice, CNS antidote concentrations are enhanced, and total body clearances are concomitantly diminished. RS194B with repurposed transport inhibitors should enhance reactivation of central and peripheral OP-inhibited acetylcholinesterase. Activities at both disposition sites are a desired features for replacing the antidote, pralidoxime, for acute OP exposure.


Asunto(s)
Acetilcolinesterasa , Cinética , Organofosfatos , Compuestos de Pralidoxima
7.
J Biol Chem ; 294(27): 10607-10618, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138650

RESUMEN

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.


Asunto(s)
Acetilcolinesterasa/química , Compuestos Organotiofosforados/química , Oximas/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Humanos , Simulación de Dinámica Molecular , Compuestos Organotiofosforados/metabolismo , Oximas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura
8.
Toxicol Appl Pharmacol ; 372: 40-46, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978400

RESUMEN

Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.


Asunto(s)
Antídotos/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Organofosfatos/toxicidad , Oximas/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Antídotos/química , Butirilcolinesterasa/sangre , Butirilcolinesterasa/química , Dominio Catalítico , Reactivadores de la Colinesterasa/química , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Humanos , Mutación , Oximas/química , Conformación Proteica , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
9.
Chemistry ; 25(16): 4100-4114, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30458057

RESUMEN

Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Organofosfatos/toxicidad , Oximas/farmacocinética , Triazoles/química , Alquinos/química , Animales , Profilaxis Antibiótica/métodos , Antídotos/metabolismo , Azidas/química , Catálisis , Cobre/química , Femenino , Cinética , Ratones , Estructura Molecular , Organofosfatos/síntesis química , Compuestos Organofosforados/metabolismo , Oximas/administración & dosificación , Oximas/efectos adversos
10.
J Pharmacol Exp Ther ; 367(2): 363-372, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30190337

RESUMEN

In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s. Yet these agents, by virtue of their quaternary structure, are limited in rates of crossing the blood-brain barrier, and they require administration parenterally to achieve full distribution in the body. Oximes lacking cationic charges or presenting a tertiary amine have been considered as alternatives. Herein, we examine the pharmacokinetic properties of a lead ionizable, zwitterionic hydroxyiminoacetamido alkylamine in mice to develop a framework for studying these agents in vivo and generate sufficient data for their consideration as appropriate antidotes for humans. Consequently, in vitro and in vivo efficacies of immediate structural congeners were explored as leads or backups for animal studies. We compared oral and parenteral dosing, and we developed an intramuscular loading and oral maintenance dosing scheme in mice. Steady-state plasma and brain levels of the antidote were achieved with sequential administrations out to 10 hours, with brain levels exceeding plasma levels shortly after administration. Moreover, the zwitterionic oxime showed substantial protection after gavage, whereas the classic methylpyridinium aldoxime (2-pyridinealdoxime methiodide) was without evident protection. Although further studies in other animal species are necessary, ionizing zwitterionic aldoximes present viable alternatives to existing antidotes for prophylaxis and treatment of large numbers of individuals in terrorist-led events with nerve agent organophosphates, such as sarin, and in organophosphate pesticide exposure.


Asunto(s)
Antídotos/farmacología , Antídotos/farmacocinética , Intoxicación por Organofosfatos/tratamiento farmacológico , Organofosfatos/efectos adversos , Administración Oral , Animales , Encéfalo/efectos de los fármacos , Femenino , Plomo/efectos adversos , Masculino , Ratones , Agentes Nerviosos/efectos adversos , Compuestos Organofosforados/efectos adversos , Oximas/farmacocinética , Oximas/farmacología , Plaguicidas/efectos adversos , Distribución Tisular
11.
Arch Toxicol ; 92(3): 1161-1176, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29167930

RESUMEN

The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.


Asunto(s)
Colinesterasas/genética , Colinesterasas/metabolismo , Respuesta al Choque Térmico/fisiología , Planarias/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Colinesterasas/química , Diazinón/farmacología , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Respuesta al Choque Térmico/efectos de los fármacos , Sistema Nervioso/enzimología , Fisostigmina/farmacología , Planarias/efectos de los fármacos , Conformación Proteica
12.
Arch Toxicol ; 91(8): 2837-2847, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27990564

RESUMEN

The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Colinesterasas/metabolismo , Compuestos Organofosforados/toxicidad , Plaguicidas/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Humanos , Técnicas In Vitro , Modelos Animales , Planarias , Especificidad de la Especie
13.
Arch Toxicol ; 91(2): 909-919, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26838044

RESUMEN

Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Eα, Eß and Eγ. The Eα-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Eα activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Eα activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.


Asunto(s)
Encéfalo/efectos de los fármacos , Butirilcolinesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Isoflurofato/análogos & derivados , Animales , Encéfalo/metabolismo , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Pollos , Cromatografía Liquida/métodos , Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Isoflurofato/administración & dosificación , Isoflurofato/toxicidad , Fenotiazinas/farmacología , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
14.
Proc Natl Acad Sci U S A ; 111(29): 10749-54, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25006260

RESUMEN

The nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP) are pentameric oligomers in which binding sites for nicotinic agonists and competitive antagonists are found at selected subunit interfaces. The nAChR spontaneously exists in multiple conformations associated with its activation and desensitization steps, and conformations are selectively stabilized by binding of agonists and antagonists. In the nAChR, agonist binding and the associated conformational changes accompanying activation and desensitization are cooperative. AChBP, which lacks the transmembrane spanning and cytoplasmic domains, serves as a homology model of the extracellular domain of the nAChRs. We identified unique cooperative binding behavior of a number of 4,6-disubstituted 2-aminopyrimidines to Lymnaea AChBP, with different molecular variants exhibiting positive, nH > 1.0, and negative cooperativity, nH < 1.0. Therefore, for a distinctive set of ligands, the extracellular domain of a nAChR surrogate suffices to accommodate cooperative interactions. X-ray crystal structures of AChBP complexes with examples of each allowed the identification of structural features in the ligands that confer differences in cooperative behavior. Both sets of molecules bind at the agonist-antagonist site, as expected from their competition with epibatidine. An analysis of AChBP quaternary structure shows that cooperative ligand binding is associated with a blooming or flare conformation, a structural change not observed with the classical, noncooperative, nicotinic ligands. Positively and negatively cooperative ligands exhibited unique features in the detailed binding determinants and poses of the complexes.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Acetilcolina , Animales , Unión Competitiva , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Piridinas/química , Piridinas/metabolismo , Tritio
16.
Toxicol Appl Pharmacol ; 284(2): 197-203, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25701203

RESUMEN

The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure.


Asunto(s)
Antídotos/farmacología , Sustancias para la Guerra Química/toxicidad , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos Organofosforados/antagonistas & inhibidores , Compuestos Organofosforados/toxicidad , Oximas/farmacología , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Embrión no Mamífero/efectos de los fármacos , Humanos , Cinética , Pez Cebra
17.
Chem Res Toxicol ; 28(5): 1036-44, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25835984

RESUMEN

Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 µM soman was detoxified within 30 min when supplemented with 0.5 µM Y337A/F338A AChE and 100 µM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/farmacología , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Oximas/farmacología , Compuestos de Piridinio/farmacología , Soman/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Mutación Puntual
18.
Biochem J ; 450(1): 231-42, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23216060

RESUMEN

In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.


Asunto(s)
Butirilcolinesterasa/metabolismo , Sustancias para la Guerra Química/metabolismo , Organofosfatos/metabolismo , Oximas/química , Paraoxon/metabolismo , Sarín/metabolismo , Animales , Catálisis , Sustancias para la Guerra Química/toxicidad , Femenino , Humanos , Concentración de Iones de Hidrógeno , Inactivación Metabólica , Cinética , Ratones , Ratones Endogámicos , Organofosfatos/toxicidad , Oximas/metabolismo , Paraoxon/toxicidad , Sarín/toxicidad
19.
J Biol Chem ; 287(15): 11798-809, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22343626

RESUMEN

We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.


Asunto(s)
Acetamidas/química , Antídotos/química , Reactivadores de la Colinesterasa/química , Oximas/química , Acetamidas/farmacocinética , Acetamidas/toxicidad , Acetilcolinesterasa , Animales , Antídotos/farmacocinética , Antídotos/toxicidad , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacocinética , Reactivadores de la Colinesterasa/toxicidad , Evaluación Preclínica de Medicamentos/normas , Femenino , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Dosificación Letal Mediana , Ratones , Estructura Molecular , Organofosfatos/química , Organofosfatos/toxicidad , Oximas/farmacocinética , Oximas/toxicidad , Unión Proteica , Estándares de Referencia , Relación Estructura-Actividad , Distribución Tisular
20.
J Chem Inf Model ; 53(4): 898-906, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23451944

RESUMEN

The use of computer-aided structure-based drug design prior to synthesis has proven to be generally valuable in suggesting improved binding analogues of existing ligands. Here we describe the application of the program AutoDock to the design of a focused library that was used in the "click chemistry in-situ" generation of the most potent noncovalent inhibitor of the native enzyme acetylcholinesterase (AChE) yet developed (K(d) = ~100 fM). AutoDock version 3.0.5 has been widely distributed and successfully used to predict bound conformations of flexible ligands. Here, we also used a version of AutoDock which permits additional conformational flexibility in selected amino acid side chains of the target protein.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Sitios de Unión , Química Clic , Diseño Asistido por Computadora , Humanos , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA