RESUMEN
Cells regularly experience fluid flow in natural systems. However, most experimental systems rely on batch cell culture and fail to consider the effect of flow-driven dynamics on cell physiology. Using microfluidics and single-cell imaging, we discover that the interplay of physical shear rate (a measure of fluid flow) and chemical stress trigger a transcriptional response in the human pathogen Pseudomonas aeruginosa. In batch cell culture, cells protect themselves by quickly scavenging the ubiquitous chemical stressor hydrogen peroxide (H2O2) from the media. In microfluidic conditions, we observe that cell scavenging generates spatial gradients of H2O2. High shear rates replenish H2O2, abolish gradients, and generate a stress response. Combining mathematical simulations and biophysical experiments, we find that flow triggers an effect like "wind-chill" that sensitizes cells to H2O2 concentrations 100 to 1,000 times lower than traditionally studied in batch cell culture. Surprisingly, the shear rate and H2O2 concentration required to generate a transcriptional response closely match their respective values in the human bloodstream. Thus, our results explain a long-standing discrepancy between H2O2 levels in experimental and host environments. Finally, we demonstrate that the shear rate and H2O2 concentration found in the human bloodstream trigger gene expression in the blood-relevant human pathogen Staphylococcus aureus, suggesting that flow sensitizes bacteria to chemical stress in natural environments.
Asunto(s)
Bacterias , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Bacterias/metabolismo , Microfluídica , Técnicas de Cultivo Celular por Lotes , Pseudomonas aeruginosa/genéticaRESUMEN
The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ratones , NAD , Staphylococcus aureus/genética , VirulenciaRESUMEN
The ability of Staphylococcus aureus and other pathogens to consume glucose is critical during infection. However, glucose consumption increases the cellular demand for manganese sensitizing S. aureus to host-imposed manganese starvation. The current investigations were undertaken to elucidate how S. aureus copes with the need to consume glucose when metal-limited by the host. A critical component of host defense is production of the manganese binding protein calprotectin. S. aureus has two variants of phosphoglycerate mutase, one of which is manganese-dependent, GpmI, and another that is manganese-independent, GpmA. Leveraging the ability to impose metal starvation in culture utilizing calprotectin revealed that the loss of GpmA, but not GpmI, sensitized S. aureus to manganese starvation. Metabolite feeding experiments revealed that the growth defect of GpmA when manganese-starved was due to a defect in glycolysis and not gluconeogenesis. Loss of GpmA reduces the ability of S. aureus to cause invasive disease in wild type mice. However, GpmA was dispensable in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of S. aureus to overcome manganese limitation during infection. Cumulatively, these observations suggest that expressing a metal-independent variant enables S. aureus to consume glucose while mitigating the negative impact that glycolysis has on the cellular demand for manganese. S. aureus is not the only bacterium that expresses manganese-dependent and -independent variants of phosphoglycerate mutase. Similar results were also observed in culture with Salmonella enterica serovar Typhimurium mutants lacking the metal-independent isozyme. These similar observations in both Gram-positive and Gram-negative pathogens suggest that expression of metal-independent glycolytic isozymes is a common strategy employed by bacteria to survive in metal-limited environments, such as the host.
Asunto(s)
Metales/metabolismo , Fosfoglicerato Mutasa/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Variación Genética , Glucólisis , Isoenzimas/genética , Isoenzimas/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoglicerato Mutasa/genética , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , VirulenciaRESUMEN
Phosphate is an essential nutrient that Staphylococcus aureus and other pathogens must acquire from the host during infection. While inorganic monophosphate (Pi) is the preferred source of this nutrient, bacteria can also obtain it from phosphate-containing organic molecules. The Pi-responsive regulator PhoPR is necessary for S. aureus to cause infection, suggesting that Pi is not freely available during infection and that this nutrient must be obtained from other sources. However, the organophosphates from which S. aureus can obtain phosphate are unknown. We evaluated the ability of 58 phosphorus-containing molecules to serve as phosphate sources for S. aureus Forty-six of these compounds, including phosphorylated amino acids, sugars, and nucleotides, supported growth. Among the organophosphate sources was glycerol-3-phosphate (G3P), which is commonly found in the mammalian host. Differing from the model organism Escherichia coli, S. aureus does not import G3P intact to obtain Pi Instead, S. aureus relies on the phosphatase PhoB to release Pi from G3P, which is subsequently imported by Pi transporters. To determine if this strategy is used by S. aureus to extract phosphate from other phosphate sources, we assessed the ability of PhoB- and Pi transporter-deficient strains to grow on the same library of phosphorus-containing molecules. Sixty percent of the substrates (28/46) relied on the PhoB/Pi transporter pathway, and an additional 10/46 (22%) were PhoB independent but still required Pi transport through the Pi transporters. Cumulatively, these results suggest that in Pi-limited environments, S. aureus preferentially generates Pi from organophosphates and then relies on Pi transporters to import this nutrient.IMPORTANCE For bacteria, the preferred form of the essential nutrient phosphate is inorganic monophosphate (Pi), but phosphate can also be extracted from a variety of phosphocompounds. Pathogens, including Staphylococcus aureus, experience Pi limitation within the host, suggesting that the use of alternative phosphate sources is important during infection. However, the alternative phosphate sources that can be used by S. aureus and others remain largely unexplored. We screened a library of phosphorus-containing compounds for the ability to support growth as a phosphate source. S. aureus could use a variety of phosphocompounds, including nucleotides, phosphosugars, and phosphoamino acids. Subsequent genetic analysis determined that a majority of these alternative phosphate sources are first processed extracellularly to liberate Pi, which is then imported through Pi transporters.
Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Organofosfatos/metabolismo , Fosfatos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nutrientes , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrolloRESUMEN
The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.
Asunto(s)
Imidazoles/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Zinc/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genéticaRESUMEN
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Asunto(s)
Homeostasis , Interacciones Huésped-Patógeno , Fenómenos Fisiológicos de la Nutrición , Fosfatos/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Susceptibilidad a Enfermedades , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Metales/metabolismoRESUMEN
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Asunto(s)
Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Complejo de Antígeno L1 de Leucocito/metabolismo , Estrés Oxidativo , VirulenciaRESUMEN
Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.
Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , VirulenciaRESUMEN
During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/metabolismoRESUMEN
The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.
Asunto(s)
Candida albicans/efectos de los fármacos , Cobre/metabolismo , Complejo de Antígeno L1 de Leucocito/farmacología , Zinc/metabolismo , Animales , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Homeostasis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
During infection the host imposes manganese and zinc starvation on invading pathogens. Despite this, Staphylococcus aureus and other successful pathogens remain capable of causing devastating disease. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. We report that ArlRS, a global staphylococcal virulence regulator, enhances the ability of S. aureus to grow in the presence of the manganese-and zinc-binding innate immune effector calprotectin. Utilization of calprotectin variants with altered metal binding properties revealed that strains lacking ArlRS are specifically more sensitive to manganese starvation. Loss of ArlRS did not alter the expression of manganese importers or prevent S. aureus from acquiring metals. It did, however, alter staphylococcal metabolism and impair the ability of S. aureus to grow on amino acids. Further studies suggested that relative to consuming glucose, the preferred carbon source of S. aureus, utilizing amino acids reduced the cellular demand for manganese. When forced to use glucose as the sole carbon source S. aureus became more sensitive to calprotectin compared to when amino acids are provided. Infection experiments utilizing wild type and calprotectin-deficient mice, which have defects in manganese sequestration, revealed that ArlRS is important for disease when manganese availability is restricted but not when this essential nutrient is freely available. In total, these results indicate that altering cellular metabolism contributes to the ability of pathogens to resist manganese starvation and that ArlRS enables S. aureus to overcome nutritional immunity by facilitating this adaptation.
Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Bacterianas/metabolismo , Evasión Inmune/fisiología , Proteínas Quinasas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , RatonesRESUMEN
Transition metals are necessary for all forms of life including microorganisms, evidenced by the fact that 30% of all proteins are predicted to interact with a metal cofactor. Through a process termed nutritional immunity, the host actively sequesters essential nutrient metals away from invading pathogenic bacteria. Neutrophils participate in this process by producing several metal chelating proteins, including lactoferrin and calprotectin (CP). As neutrophils are an important component of the inflammatory response directed against the bacterium Helicobacter pylori, a major risk factor for gastric cancer, it was hypothesized that CP plays a role in the host response to H. pylori. Utilizing a murine model of H. pylori infection and gastric epithelial cell co-cultures, the role CP plays in modifying H. pylori -host interactions and the function of the cag Type IV Secretion System (cag T4SS) was investigated. This study indicates elevated gastric levels of CP are associated with the infiltration of neutrophils to the H. pylori-infected tissue. When infected with an H. pylori strain harboring a functional cag T4SS, calprotectin-deficient mice exhibited decreased bacterial burdens and a trend toward increased cag T4SS -dependent inflammation compared to wild-type mice. In vitro data demonstrate that culturing H. pylori with sub-inhibitory doses of CP reduces the activity of the cag T4SS and the biogenesis of cag T4SS-associated pili in a zinc-dependent fashion. Taken together, these data indicate that zinc homeostasis plays a role in regulating the proinflammatory activity of the cag T4SS.
Asunto(s)
Proteínas Bacterianas/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Complejo de Antígeno L1 de Leucocito/metabolismo , Zinc/metabolismo , Animales , Técnicas de Cocultivo/métodos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Homeostasis/fisiología , Ratones , Factores de Riesgo , Neoplasias Gástricas/metabolismoRESUMEN
Helicobacter pylori colonizes the human stomach and confers an increased risk for the development of peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. A secreted H. pylori toxin, VacA, can cause multiple alterations in gastric epithelial cells, including cell death. In this study, we sought to identify host cell factors that are required for VacA-induced cell death. To do this, we analyzed gene trap and short hairpin RNA (shRNA) libraries in AZ-521 human gastric epithelial cells and selected for VacA-resistant clones. Among the VacA-resistant clones, we identified multiple gene trap library clones and an shRNA library clone with disrupted expression of connexin 43 (Cx43) (also known as gap junction protein alpha 1 [GJA1]). Further experiments with Cx43-specific shRNAs confirmed that a reduction in Cx43 expression results in resistance to VacA-induced cell death. Immunofluorescence microscopy experiments indicated that VacA did not colocalize with Cx43. We detected production of the Cx43 protein in AZ-521 cells but not in AGS, HeLa, or RK-13 cells, and correspondingly, AZ-521 cells were the most susceptible to VacA-induced cell death. When Cx43 was expressed in HeLa cells, the cells became more susceptible to VacA. These results indicate that Cx43 is a host cell constituent that contributes to VacA-induced cell death and that variation among cell types in susceptibility to VacA-induced cell death is attributable at least in part to cell type-specific differences in Cx43 production.
Asunto(s)
Proteínas Bacterianas/fisiología , Muerte Celular/fisiología , Conexina 43/metabolismo , Células Epiteliales/fisiología , Helicobacter pylori/fisiología , Supervivencia Celular , Células Cultivadas , Mucosa Gástrica/citología , Humanos , ARN Interferente Pequeño/análisisRESUMEN
Persistent colonization of the human stomach with Helicobacter pylori is a risk factor for gastric adenocarcinoma, and H. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT) cagA(+) H. pylori strain or an isogenic cagA mutant strain and maintained the animals on a regular diet or a high-salt diet. At 4 months postinfection, gastric adenocarcinoma was detected in 100% of the WT-infected/high-salt-diet animals, 58% of WT-infected/regular-diet animals, and none of the animals infected with the cagA mutant strain (P < 0.0001). Among animals infected with the WT strain, those fed a high-salt diet had more severe gastric inflammation, higher gastric pH, increased parietal cell loss, increased gastric expression of interleukin 1ß (IL-1ß), and decreased gastric expression of hepcidin and hydrogen potassium ATPase (H,K-ATPase) compared to those on a regular diet. Previous studies have detected upregulation of CagA synthesis in response to increased salt concentrations in the bacterial culture medium, and, concordant with the in vitro results, we detected increased cagA transcription in vivo in animals fed a high-salt diet compared to those on a regular diet. Animals infected with the cagA mutant strain had low levels of gastric inflammation and did not develop hypochlorhydria. These results indicate that a high-salt diet potentiates the carcinogenic effects of cagA(+) H. pylori strains.
Asunto(s)
Adenocarcinoma/etiología , Infecciones por Helicobacter/complicaciones , Cloruro de Sodio Dietético/toxicidad , Neoplasias Gástricas/etiología , Aclorhidria , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mucosa Gástrica/metabolismo , Regulación de la Expresión Génica , Gerbillinae , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estómago/química , Estómago/microbiología , Estómago/patologíaRESUMEN
The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.
Asunto(s)
Manganeso , Infecciones Estafilocócicas , Animales , Ratones , Manganeso/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Staphylococcus aureus/metabolismo , Isoenzimas/metabolismo , Metales/metabolismo , Bacterias/metabolismo , Aldehído-Liasas/metabolismo , Infecciones Estafilocócicas/microbiologíaRESUMEN
IMPORTANCE: During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Asunto(s)
Cobre , Staphylococcus aureus , Cobre/toxicidad , Cobre/metabolismo , Staphylococcus aureus/metabolismo , Metales/metabolismo , Zinc/metabolismo , Bacterias/metabolismoRESUMEN
Group B Streptococcus (GBS) is a Gram-positive pathobiont that can cause adverse health outcomes in neonates and vulnerable adult populations. GBS is one of the most frequently isolated bacteria from diabetic (Db) wound infections but is rarely found in the non-diabetic (nDb) wound environment. Previously, RNA sequencing of wound tissue from Db wound infections in leprdb diabetic mice showed increased expression of neutrophil factors, and genes involved in GBS metal transport such as the zinc (Zn), manganese (Mn), and putative nickel (Ni) import systems. Here, we develop a Streptozotocin-induced diabetic wound model to evaluate the pathogenesis of two invasive strains of GBS, serotypes Ia and V. We observe an increase in metal chelators such as calprotectin (CP) and lipocalin-2 during diabetic wound infections compared to nDb. We find that CP limits GBS survival in wounds of non-diabetic mice but does not impact survival in diabetic wounds. Additionally, we utilize GBS metal transporter mutants and determine that the Zn, Mn, and putative Ni transporters in GBS are dispensable in diabetic wound infection but contributed to bacterial persistence in non-diabetic animals. Collectively, these data suggest that in non-diabetic mice, functional nutritional immunity mediated by CP is effective at mitigating GBS infection, whereas in diabetic mice, the presence of CP is not sufficient to control GBS wound persistence. IMPORTANCE Diabetic wound infections are difficult to treat and often become chronic due to an impaired immune response as well as the presence of bacterial species that establish persistent infections. Group B Streptococcus (GBS) is one of the most frequently isolated bacterial species in diabetic wound infections and, as a result, is one of the leading causes of death from skin and subcutaneous infection. However, GBS is notoriously absent in non-diabetic wounds, and little is known about why this species thrives in diabetic infection. The work herein investigates how alterations in diabetic host immunity may contribute to GBS success during diabetic wound infection.
Asunto(s)
Diabetes Mellitus Experimental , Infecciones Estreptocócicas , Infección de Heridas , Ratones , Animales , Neutrófilos , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genéticaRESUMEN
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE: During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
RESUMEN
Colonization of the human stomach with Helicobacter pylori is a risk factor for peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. The secreted VacA toxin is an important H. pylori virulence factor that causes multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) are associated with an increased risk of gastric disease, compared to strains containing other vacA types (s2, i2, and m2). Thus far, there has been relatively little study of the role of the VacA intermediate region (i-region) in toxin activity. In this study, we compared the ability of i1 and i2 forms of VacA to cause functional alterations in Jurkat cells. To do this, we manipulated the chromosomal vacA gene in two H. pylori strains to introduce alterations in the region encoding the VacA i-region. We did not detect any differences in the capacity of i1 and i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of VacA, i2 forms of VacA had a diminished capacity to inhibit the activation of nuclear factor of activated T cells (NFAT) and suppress interleukin-2 (IL-2) production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did i1 forms of VacA. These results indicate that the VacA i-region is an important determinant of VacA effects on human T cell function.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Regulación Bacteriana de la Expresión Génica/fisiología , Helicobacter pylori/metabolismo , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Antígenos CD18/metabolismo , Humanos , Interleucina-2/metabolismo , Células Jurkat , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas , Linfocitos T/inmunología , Linfocitos T/microbiologíaRESUMEN
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT. IMPORTANCE Morbidity and mortality associated with GBS begin with colonization of the female reproductive tract (FRT). To date, our understanding of the factors required for GBS persistence in this environment remain limited. We identified several necessary systems for initial colonization of the vaginal lumen and penetration into the reproductive tissues via transposon mutagenesis sequencing. We determined that mutations in mtsA, the gene encoding a protein putatively involved in manganese (Mn2+) transport, were significantly underrepresented in all in vivo samples collected. We also show that mtsA contributes to Mn2+ acquisition and GBS survival during metal limitation by calprotectin, a metal-chelating protein complex. We further demonstrate that a mutant lacking mtsA is hypersusceptible to oxidative stress induced by both H2O2 and paraquat and has a severe fitness defect compared to WT GBS in the murine vaginal tract. This work reveals the importance of Mn2+ homeostasis at the host-pathogen interface in the FRT.