Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 560, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736708

RESUMEN

BACKGROUND: Genomic data-based machine learning tools are promising for real-time surveillance activities performing source attribution of foodborne bacteria such as Listeria monocytogenes. Given the heterogeneity of machine learning practices, our aim was to identify those influencing the source prediction performance of the usual holdout method combined with the repeated k-fold cross-validation method. METHODS: A large collection of 1 100 L. monocytogenes genomes with known sources was built according to several genomic metrics to ensure authenticity and completeness of genomic profiles. Based on these genomic profiles (i.e. 7-locus alleles, core alleles, accessory genes, core SNPs and pan kmers), we developed a versatile workflow assessing prediction performance of different combinations of training dataset splitting (i.e. 50, 60, 70, 80 and 90%), data preprocessing (i.e. with or without near-zero variance removal), and learning models (i.e. BLR, ERT, RF, SGB, SVM and XGB). The performance metrics included accuracy, Cohen's kappa, F1-score, area under the curves from receiver operating characteristic curve, precision recall curve or precision recall gain curve, and execution time. RESULTS: The testing average accuracies from accessory genes and pan kmers were significantly higher than accuracies from core alleles or SNPs. While the accuracies from 70 and 80% of training dataset splitting were not significantly different, those from 80% were significantly higher than the other tested proportions. The near-zero variance removal did not allow to produce results for 7-locus alleles, did not impact significantly the accuracy for core alleles, accessory genes and pan kmers, and decreased significantly accuracy for core SNPs. The SVM and XGB models did not present significant differences in accuracy between each other and reached significantly higher accuracies than BLR, SGB, ERT and RF, in this order of magnitude. However, the SVM model required more computing power than the XGB model, especially for high amount of descriptors such like core SNPs and pan kmers. CONCLUSIONS: In addition to recommendations about machine learning practices for L. monocytogenes source attribution based on genomic data, the present study also provides a freely available workflow to solve other balanced or unbalanced multiclass phenotypes from binary and categorical genomic profiles of other microorganisms without source code modifications.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/genética , Genómica , Aprendizaje Automático Supervisado , Aprendizaje Automático , Alelos
2.
BMC Genomics ; 23(1): 235, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346021

RESUMEN

BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate's genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X.


Asunto(s)
Listeria monocytogenes , Genoma Bacteriano , Listeria monocytogenes/genética , Tipificación de Secuencias Multilocus , Filogenia , Secuenciación Completa del Genoma
3.
Food Microbiol ; 106: 103757, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690455

RESUMEN

In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.


Asunto(s)
Desinfectantes , Listeria monocytogenes , Animales , Compuestos de Benzalconio/farmacología , Cloruros , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Ecosistema , Genómica
4.
BMC Genomics ; 22(1): 782, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717546

RESUMEN

BACKGROUND: Faced with the ongoing global pandemic of coronavirus disease, the 'National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis' (GENPAT) formally established at the 'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise' (IZSAM) in Teramo (Italy) is in charge of the SARS-CoV-2 surveillance at the genomic scale. In a context of SARS-CoV-2 surveillance requiring correct and fast assessment of epidemiological clusters from substantial amount of samples, the present study proposes an analytical workflow for identifying accurately the PANGO lineages of SARS-CoV-2 samples and building of discriminant minimum spanning trees (MST) bypassing the usual time consuming phylogenomic inferences based on multiple sequence alignment (MSA) and substitution model. RESULTS: GENPAT constituted two collections of SARS-CoV-2 samples. The first collection consisted of SARS-CoV-2 positive swabs collected by IZSAM from the Abruzzo region (Italy), then sequenced by next generation sequencing (NGS) and analyzed in GENPAT (n = 1592), while the second collection included samples from several Italian provinces and retrieved from the reference Global Initiative on Sharing All Influenza Data (GISAID) (n = 17,201). The main results of the present work showed that (i) GENPAT and GISAID detected the same PANGO lineages, (ii) the PANGO lineages B.1.177 (i.e. historical in Italy) and B.1.1.7 (i.e. 'UK variant') are major concerns today in several Italian provinces, and the new MST-based method (iii) clusters most of the PANGO lineages together, (iv) with a higher dicriminatory power than PANGO lineages, (v) and faster that the usual phylogenomic methods based on MSA and substitution model. CONCLUSIONS: The genome sequencing efforts of Italian provinces, combined with a structured national system of NGS data management, provided support for surveillance SARS-CoV-2 in Italy. We propose to build phylogenomic trees of SARS-CoV-2 variants through an accurate, discriminant and fast MST-based method avoiding the typical time consuming steps related to MSA and substitution model-based phylogenomic inference.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Italia , Filogenia , Polimorfismo de Nucleótido Simple
5.
BMC Genomics ; 21(1): 130, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32028892

RESUMEN

BACKGROUND: Listeria monocytogenes Clonal Complexes (CCs) have been epidemiologically associated with foods, especially ready-to-eat (RTE) products for which the most likely source of contamination depends on the occurrence of persisting clones in food-processing environments (FPEs). As the ability of L. monocytogenes to adapt to environmental stressors met in the food chain challenges the efforts to its eradication from FPEs, the threat of persistent strains to the food industry and public health authorities continues to rise. In this study, 94 food and FPEs L. monocytogenes isolates, representing persistent subtypes contaminating three French seafood facilities over 2-6 years, were whole-genome sequenced to characterize their genetic diversity and determine the biomarkers associated with long-term survival in FPEs. RESULTS: Food and FPEs isolates belonged to five CCs, comprising long-term intra- and inter-plant persisting clones. Mobile genetic elements (MGEs) such as plasmids, prophages and transposons were highly conserved within CCs, some of which harboured genes for resistance to chemical compounds and biocides used in the processing plants. Some of these genes were found in a 90.8 kbp plasmid, predicted to be" mobilizable", identical in isolates from CC204 and CC155, and highly similar to an 81.6 kbp plasmid from isolates belonging to CC7. These similarities suggest horizontal transfer between isolates, accompanied by deletion and homologous recombination in isolates from CC7. Prophage profiles characterized persistent clonal strains and several prophage-loci were plant-associated. Notably, a persistent clone from CC101 harboured a novel 31.5 kbp genomic island that we named Listeria genomic island 3 (LGI3), composed by plant-associated loci and chromosomally integrating cadmium-resistance determinants cadA1C. CONCLUSIONS: Genome-wide analysis indicated that inter- and intra-plant persisting clones harbour conserved MGEs, likely acquired in FPEs and maintained by selective pressures. The presence of closely related plasmids in L. monocytogenes CCs supports the hypothesis of horizontal gene transfer conferring enhanced survival to FPE-associated stressors, especially in hard-to-clean harbourage sites. Investigating the MGEs evolutionary and transmission dynamics provides additional resolution to trace-back potentially persistent clones. The biomarkers herein discovered provide new tools for better designing effective strategies for the removal or reduction of resident L. monocytogenes in FPEs to prevent contamination of RTE seafood.


Asunto(s)
Industria de Procesamiento de Alimentos , Secuencias Repetitivas Esparcidas , Listeria monocytogenes/genética , Alimentos Marinos/microbiología , Francia , Genes Bacterianos , Genoma Bacteriano , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Filogenia , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Profagos/genética , Estrés Fisiológico/genética
6.
BMC Genomics ; 20(1): 814, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694533

RESUMEN

BACKGROUND: Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS: Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS: Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.


Asunto(s)
Genómica , Salmonella enterica/genética , Salmonella enterica/metabolismo , Animales , Estudio de Asociación del Genoma Completo , Mutación , Filogenia
7.
Proc Natl Acad Sci U S A ; 112(44): 13609-14, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483462

RESUMEN

Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than the Canadian average. Molecular studies in this region have documented limited bacterial genetic diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor (MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer SNPs than pairs from different villages (median: 6 vs. 47, P < 0.00005), indicating that most transmission occurs within villages. There was an excess of nonsynonymous SNPs after the diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). Nonsynonymous SNPs were detected across all gene categories, arguing against positive selection and toward genetic drift with relaxation of purifying selection. Supporting the latter possibility, 28 genes were partially or completely deleted since the MRCA, including genes previously reported to be essential for M. tuberculosis growth. Our findings indicate that the epidemiologic success of M. tuberculosis in this region is more likely due to an environment conducive to TB transmission than a particularly well-adapted strain.


Asunto(s)
Mycobacterium tuberculosis/genética , Genes Bacterianos , Genética de Población , Humanos , Inuk , Polimorfismo de Nucleótido Simple , Quebec/epidemiología , Selección Genética , Tuberculosis/epidemiología , Tuberculosis/transmisión
8.
BMC Microbiol ; 17(1): 222, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183286

RESUMEN

BACKGROUND: Many of the bacterial genomic studies exploring evolution processes of the host adaptation focus on the accessory genome describing how the gains and losses of genes can explain the colonization of new habitats. Consequently, we developed a new approach focusing on the coregenome in order to describe the host adaptation of Salmonella serovars. METHODS: In the present work, we propose bioinformatic tools allowing (i) robust phylogenetic inference based on SNPs and recombination events, (ii) identification of fixed SNPs and InDels distinguishing homoplastic and non-homoplastic coregenome variants, and (iii) gene-ontology enrichment analyses to describe metabolic processes involved in adaptation of Salmonella enterica subsp. enterica to mammalian- (S. Dublin), multi- (S. Enteritidis), and avian- (S. Pullorum and S. Gallinarum) hosts. RESULTS: The 'VARCall' workflow produced a robust phylogenetic inference confirming that the monophyletic clade S. Dublin diverged from the polyphyletic clade S. Enteritidis which includes the divergent clades S. Pullorum and S. Gallinarum (i). The scripts 'phyloFixedVar' and 'FixedVar' detected non-synonymous and non-homoplastic fixed variants supporting the phylogenetic reconstruction (ii). The scripts 'GetGOxML' and 'EveryGO' identified representative metabolic pathways related to host adaptation using the first gene-ontology enrichment analysis based on bacterial coregenome variants (iii). CONCLUSIONS: We propose in the present manuscript a new coregenome approach coupling identification of fixed SNPs and InDels with regards to inferred phylogenetic clades, and gene-ontology enrichment analysis in order to describe the adaptation of Salmonella serovars Dublin (i.e. mammalian-hosts), Enteritidis (i.e. multi-hosts), Pullorum (i.e. avian-hosts) and Gallinarum (i.e. avian-hosts) at the coregenome scale. All these polyvalent Bioinformatic tools can be applied on other bacterial genus without additional developments.


Asunto(s)
Adaptación Fisiológica/genética , Aves/microbiología , Genoma Bacteriano/genética , Mamíferos/microbiología , Filogenia , Salmonella/clasificación , Salmonella/genética , Animales , Aves/fisiología , Evolución Molecular , Ontología de Genes , Especificidad del Huésped , Mutación INDEL , Mamíferos/fisiología , Polimorfismo de Nucleótido Simple , Recombinación Genética , Salmonella/fisiología , Serogrupo
9.
J Infect Dis ; 211(12): 1905-14, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25576599

RESUMEN

BACKGROUND: Between November 2011 and November 2012, a Canadian village of 933 persons had 50 culture-positive cases of tuberculosis, with 49 sharing the same genotype. METHODS: We performed Illumina-based whole-genome sequencing on Mycobacterium tuberculosis isolates from this village, during and before the outbreak. Phylogenetic trees were generated using the maximum likelihood method. RESULTS: Three distinct genotypes were identified. Strain I (n = 7) was isolated in 1991-1996. Strain II (n = 8) was isolated in 1996-2004. Strain III (n = 62) first appeared in 2007 and did not arise from strain I or II. Within strain III, there were 3 related but distinct clusters: IIIA, IIIB, and IIIC. Between 2007 and 2010, cluster IIIA predominated (11 of 22 vs 2 of 40; P < .001), whereas in 2011-2012 clusters IIIB (n = 18) and IIIC (n = 20) predominated over cluster IIIA (n = 11). Combined evolutionary and epidemiologic analysis of strain III cases revealed that the outbreak in 2011-2012 was the result of ≥6 temporally staggered events, spanning from 1 reactivation case to a point-source outbreak of 20 cases. CONCLUSIONS: After the disappearance of 2 strains of M. tuberculosis in this village, its reemergence in 2007 was followed by an epidemiologic amplification, affecting >5% of the population.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades , Tuberculosis/epidemiología , Adolescente , Adulto , Regiones Árticas , Canadá/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Femenino , Genoma Bacteriano , Genotipo , Humanos , Masculino , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN , Tuberculosis/microbiología , Adulto Joven
10.
Infect Immun ; 82(7): 2902-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24778110

RESUMEN

In the present study, we have investigated the evolution and impact on virulence of a 350-kb genomic duplication present in the most recently evolved members of the Mycobacterium tuberculosis East Asian lineage. In a mouse model of infection, comparing HN878 subclones HN878-27 (no duplication) and HN878-45 (with the 350-kb duplication) revealed that the latter is impaired for in vivo growth during the initial 3 weeks of infection. Furthermore, the median survival time of mice infected with isolate HN878-45 is significantly longer (77 days) than that of mice infected with HN878-27. Whole-genome sequencing of both isolates failed to reveal any mutational events other than the duplication that could account for such a substantial difference in virulence. Although we and others had previously speculated that the 350-kb duplication arose in response to some form of host-applied selective pressure (P. Domenech, G. S. Kolly, L. Leon-Solis, A. Fallow, M. B. Reed, J. Bacteriol. 192: 4562-4570, 2010, and B. Weiner, J. Gomez, T. C. Victor, R. M. Warren, A. Sloutsky, B. B. Plikaytis, J. E. Posey, P. D. van Helden, N. C. Gey van Pittius, M. Koehrsen, P. Sisk, C. Stolte, J. White, S. Gagneux, B. Birren, D. Hung, M. Murray, J. Galagan, PLoS One 7: e26038, 2012), here we show that this large chromosomal amplification event is very rapidly selected within standard in vitro broth cultures in a range of isolates. Indeed, subclones harboring the duplication were detectable after just five rounds of in vitro passage. In contrast, the duplication appears to be highly unstable in vivo and is negatively selected during the later stages of infection in mice. We believe that the rapid in vitro evolution of M. tuberculosis is an underappreciated aspect of its biology that is often ignored, despite the fact that it has the potential to confound the data and conclusions arising from comparative studies of isolates at both the genotypic and phenotypic levels.


Asunto(s)
Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Animales , Femenino , Duplicación de Gen , Regulación Bacteriana de la Expresión Génica , Ratones , Mycobacterium tuberculosis/clasificación , Virulencia
11.
Vet Ital ; 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504601

RESUMEN

In the scope of public health, the rapid identification and control of infectious disease outbreaks are a paramount concern. Traditional surveillance methods often face challenges in effectively combining genetic, geographical, and temporal data, which is crucial for a comprehensive understanding of disease transmission dynamics. Addressing this critical need, the Spatiotemporal Phylogenomic Research and Epidemiological Analysis Dashboard (SPREAD) emerges as an innovative standalone web-based application. SPREAD integrates several modules for detailed genomic relationships, pinpointing genetically close pathogens, and spatial mapping, providing in-depth views of how diseases spread across populations and territories, with significant advantage to manage both bacteria and viruses based on allele and variant calling, respectively. Designed for broad accessibility, SPREAD operates seamlessly within web browsers, eliminating the need for sophisticated IT infrastructure and facilitating its use across various public health contexts. Its intuitive interface ensures that users can effortlessly navigate complex datasets, facilitating widespread access to advanced surveillance capabilities. Through its initial deployments, SPREAD has proven instrumental in quickly identifying transmission clusters, significantly aiding in the formulation of prompt and targeted public health responses. Through the integration of state-of-the-art technology with a focus on user-centered design, SPREAD offers a promising solution that highlights the potential of digital health innovations.

12.
BMC Microbiol ; 13: 277, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24299240

RESUMEN

BACKGROUND: The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. RESULTS: Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. CONCLUSIONS: The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.


Asunto(s)
Carga Bacteriana/métodos , ATPasas de Translocación de Protón Bacterianas/genética , Microbiología Ambiental , Mycobacterium/aislamiento & purificación , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mycobacterium/genética , Sondas de Oligonucleótidos/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
13.
Front Microbiol ; 14: 1130891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089562

RESUMEN

Introduction: In north-western France, Salmonella enterica susp. enterica serovar Mbandaka (S. Mbandaka) is most frequently isolated from bovine and dairy samples. While this serovar most often results in asymptomatic carriage, for a number of years it has caused episodes of abortions, which have serious economic consequences for the sector. Interestingly, this serovar is also isolated from Gallus gallus in the same geographic zone. Despite its prevalence in bovines in north-western France, S. Mbandaka has not been broadly studied at the genomic level, and its prevalence and host adaptation are still not fully understood. Methods: In this study, we analyzed the genomic diversity of 304 strains of S. Mbandaka isolated from the bovine and poultry sectors in this area over a period of 5 years. A phylogenetic analysis was carried out and two approaches were followed to identify conserved genes and mutations related to host associations. The first approach targeted the genes compiled in the MEGARESv2, Resfinder, VFDB and SPI databases. Plasmid and phage contents were also investigated. The second approach refers to an in-house algorithm developed for this study that computes sensitivity, specificity, and accuracy of accessory genes and core variants according to predefined genomes groups. Results and discussion: All the analyzed strains belong to the multi-locus sequence type profile ST413, and the phylogenomic analysis revealed main clustering by host (bovine and poultry), emphasizing the circulation of 12 different major clones, of which seven circulate in poultry and five in the bovine sector in France and a likely food production chain adaptation of these clones. All strains present resistance determinants including heavy metals and biocides that could explain the ability of this serovar to survive and persist in the environment, within herds, and in food processing plants. To explore the wild animal contribution to the spread of this serovar in north-western France, we retrieved S. Mbandaka genomes isolated from wild birds from EnteroBase and included them in the phylogenomic analysis together with our collection. Lastly, screening of accessory genes and major variants allowed us to identify conserved specific mutations characteristic of each major cluster. These mutations could be used to design useful probes for food safety surveillance.

14.
NAR Genom Bioinform ; 4(3): lqac047, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821882

RESUMEN

From a historically rare serotype, Salmonella enterica subsp. enterica Dublin slowly became one of the most prevalent Salmonella in cattle and raw milk cheese in some regions of France. We present a retrospective genomic analysis of 480 S. Dublin isolates to address the context, evolutionary dynamics, local diversity and the genesis processes of regional S. Dublin outbreaks events between 2015 and 2017. Samples were clustered and assessed for correlation against metadata including isolation date, isolation matrices, geographical origin and epidemiological hypotheses. Significant findings can be drawn from this work. We found that the geographical distance was a major factor explaining genetic groups in the early stages of the cheese production processes (animals, farms) while down-the-line transformation steps were more likely to host genomic diversity. This supports the hypothesis of a generalised local persistence of strains from animal to finished products, with occasional migration. We also observed that the bacterial surveillance is representative of diversity, while targeted investigations without genomics evidence often included unrelated isolates. Combining both approaches in phylogeography methods allows a better representation of the dynamics, of outbreaks.

15.
Sci Data ; 9(1): 190, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484273

RESUMEN

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Listeria monocytogenes , Listeriosis , Animales , Ecosistema , Enfermedades Transmitidas por los Alimentos/microbiología , Listeria monocytogenes/genética , Listeriosis/epidemiología , Listeriosis/microbiología
16.
Environ Sci Technol ; 45(12): 5380-6, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21591688

RESUMEN

Mycobacteria are waterborne emerging pathogens causing infections in human. Mycobacteria have been previously isolated from wastewater and sludge, but their densities were not estimated due to cultural biases. In order to evaluate the impact of wastewater treatment processes on mycobacteria removal, we used a real time PCR method. First we compared six DNA extraction methods and second we used the more efficient DNA extraction procedure (i.e., enzymatic lysis combined with hexadecyltrimethylammonium bromide-NaCl procedure) in order to quantify Mycobacterium. With the aim to identify parameters that could serve as indicator of mycobacterial behavior, mycobacterial densities were measured in parallel to those of Escherichia coli and enterococci, and to concentrations of chemical parameters usually monitored in wastewater. Mycobacterium reached 5.5 × 105 ± 3.9 × 105 copies/L in the influent, but was not detected in the effluent after decantation and biofiltration. Most mycobacteria (98.6 ± 2.7%, i.e. 2.4 ± 0.7 log10) were removed by the physical-chemical decantation, and the remaining mycobacteria were removed by biofiltration. In contrast, enterococci and E. coli were lightly removed by decantation step and mainly removed by biofiltration. Our results showed that Mycobacterium corresponds to a hydrophobic behavior linked to insoluble compound removal, whereas enterococci and E. coli refer to hydrophilic behaviors linked to soluble compound removals.


Asunto(s)
Enterococcus/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Mycobacterium/crecimiento & desarrollo , Eliminación de Residuos Líquidos , Microbiología del Agua , Purificación del Agua , Recuento de Colonia Microbiana , ADN Bacteriano/aislamiento & purificación , Enterococcus/citología , Escherichia coli/citología , Francia , Mycobacterium/citología , Análisis de Componente Principal
17.
PLoS One ; 16(2): e0246885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33607651

RESUMEN

Bacillus thuringiensis (Bt) belongs to the Bacillus cereus (Bc) group, well known as an etiological agent of foodborne outbreaks (FBOs). Bt distinguishes itself from other Bc by its ability to synthesize insecticidal crystals. However, the search for these crystals is not routinely performed in food safety or clinical investigation, and the actual involvement of Bt in the occurrence of FBOs is not known. In the present study, we reveal that Bt was detected in the context of 49 FBOs declared in France between 2007 and 2017. In 19 of these FBOs, Bt was the only microorganism detected, making it the most likely causal agent. Searching for its putative origin of contamination, we noticed that more than 50% of Bt isolates were collected from dishes containing raw vegetables, in particular tomatoes (48%). Moreover, the genomic characterization of isolates showed that most FBO-associated Bt isolates exhibited a quantified genomic proximity to Bt strains, used as biopesticides, especially those from subspecies aizawai and kurstaki. Taken together, these results strengthen the hypothesis of an agricultural origin for the Bt contamination and call for further investigations on Bt pesticides.


Asunto(s)
Bacillus thuringiensis/genética , Microbiología de Alimentos , Genómica , Genotipo , Fenotipo , Francia , Genoma Bacteriano/genética
18.
J Clin Microbiol ; 48(4): 1026-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20107094

RESUMEN

Members of the Mycobacterium avium complex (MAC) are ubiquitous bacteria that can be found in water, food, and other environmental samples and are considered opportunistic pathogens for numerous animal species, mainly birds and pigs, as well as for humans. We have recently demonstrated the usefulness of a PCR-based mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing for the molecular characterization of M. avium subsp. paratuberculosis and M. avium strains exclusively isolated from AIDS patients. In the present study we extended our analysis, based on eight MIRU-VNTR markers, to a strain collection comprehensively comprising the other M. avium subspecies, including M. avium subsp. avium, M. avium subsp. hominissuis, and M. avium subsp. silvaticum, isolated from numerous animal species, HIV-positive and HIV-negative humans, and environmental sources. All strains were fully typeable, with the discriminatory index being 0.885, which is almost equal to that obtained by IS1311 restriction fragment length polymorphism (RFLP) typing as a reference. In contrast to IS1311 RFLP typing, MIRU-VNTR typing was able to further discriminate M. avium subsp. avium strains. MIRU-VNTR alleles strongly associated with or specific for M. avium subspecies were detected in several markers. Moreover, the MIRU-VNTR typing-based results were consistent with a scenario of the independent evolution of M. avium subsp. avium/M. avium subsp. silvaticum and M. avium subsp. paratuberculosis from M. avium subsp. hominissuis, previously proposed on the basis of multilocus sequence analysis. MIRU-VNTR typing therefore appears to be a convenient typing method capable of distinguishing the three main subspecies and strains of the complex and providing new epidemiological knowledge on MAC.


Asunto(s)
Técnicas de Tipificación Bacteriana , Dermatoglifia del ADN , Complejo Mycobacterium avium/clasificación , Complejo Mycobacterium avium/aislamiento & purificación , Infección por Mycobacterium avium-intracellulare/microbiología , Infección por Mycobacterium avium-intracellulare/veterinaria , Polimorfismo Genético , Animales , Elementos Transponibles de ADN , ADN Bacteriano/genética , Genotipo , Humanos , Repeticiones de Minisatélite , Epidemiología Molecular/métodos , Complejo Mycobacterium avium/genética , Polimorfismo de Longitud del Fragmento de Restricción , Sensibilidad y Especificidad
19.
Appl Environ Microbiol ; 76(21): 7348-51, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851986

RESUMEN

A real-time quantitative PCR method was developed for the detection and enumeration of Mycobacterium spp. from environmental samples and was compared to two other methods already described. The results showed that our method, targeting 16S rRNA, was more specific than the two previously published real-time quantitative PCR methods targeting another 16S rRNA locus and the hsp65 gene (100% versus 44% and 91%, respectively).


Asunto(s)
Mycobacterium/genética , Reacción en Cadena de la Polimerasa/métodos , Microbiología del Agua , Carga Bacteriana/métodos , ADN Bacteriano/genética , Genes Bacterianos/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad
20.
Appl Environ Microbiol ; 76(11): 3514-20, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363776

RESUMEN

The environment is the likely source of most nontuberculous mycobacteria (NTM) involved in human infections, especially pulmonary, skin, and soft tissue infections. In order to measure the prevalence of NTM in different aquatic ecosystems, we tried to standardize the culture methods used for surface water testing since many procedures have been described previously. Cultivation of mycobacteria requires long-term incubation in rich media and inactivation of rapidly growing microorganisms whose growth impedes observation of mycobacterial colonies. Consequently, the two criteria used for evaluation of the methods examined were (i) the rate of inhibition of nontarget microorganisms and (ii) the efficiency of recovery of mycobacteria. We compared the competitive growth of Mycobacterium chelonae and M. avium with nontarget microorganisms on rich Middlebrook 7H11-mycobactin medium after treatment by several chemical decontamination methods that included acids, bases, detergent, or cetylpyridinium chloride (CPC) with and without an antibiotic cocktail, either PANTA (40 U/ml polymyxin, 4 microg/ml amphotericin B, 16 microg/ml nalidixic acid, 4 microg/ml trimethoprim, and 4 microg/ml azlocillin) or PANTAV (PANTA plus 10 microg/ml vancomycin). Our results showed that treatment for 30 min with CPC (final concentration, 0.05%) of water concentrated by centrifugation, followed by culture on a rich medium supplemented with PANTA, significantly decreased the growth of nontarget microorganisms (the concentrations were 6.2 +/- 0.4 log(10) CFU/liter on Middlebrook 7H11j medium and 4.2 +/- 0.2 log(10) CFU/liter on Middlebrook 7H11j medium containing PANTA [P < 0.001]), while the effect of this procedure on NTM was not as great (the concentrations of M. chelonae on the two media were 7.0 +/- 0.0 log(10) CFU/liter and 6.9 +/- 0.0 log(10) CFU/liter, respectively, and the concentrations of M. avium were 9.1 +/- 0.0 log(10) CFU/liter and 8.9 +/- 0.0 log(10) CFU/liter, respectively). We propose that this standardized culture procedure could be used for detection of NTM in aquatic samples.


Asunto(s)
Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/normas , Mycobacterium chelonae/aislamiento & purificación , Microbiología del Agua , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Mycobacterium chelonae/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA