Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 21(1): 67-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795400

RESUMEN

Optically addressable spin defects in silicon carbide (SiC) are an emerging platform for quantum information processing compatible with nanofabrication processes and device control used by the semiconductor industry. System scalability towards large-scale quantum networks demands integration into nanophotonic structures with efficient spin-photon interfaces. However, degradation of the spin-optical coherence after integration in nanophotonic structures has hindered the potential of most colour centre platforms. Here, we demonstrate the implantation of silicon vacancy centres (VSi) in SiC without deterioration of their intrinsic spin-optical properties. In particular, we show nearly lifetime-limited photon emission and high spin-coherence times for single defects implanted in bulk as well as in nanophotonic waveguides created by reactive ion etching. Furthermore, we take advantage of the high spin-optical coherences of VSi centres in waveguides to demonstrate controlled operations on nearby nuclear spin qubits, which is a crucial step towards fault-tolerant quantum information distribution based on cavity quantum electrodynamics.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , Compuestos Inorgánicos de Carbono/química , Color , Fotones , Compuestos de Silicona/química
2.
Nat Mater ; 22(6): 675-676, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37264188
3.
Phys Rev Lett ; 122(24): 243602, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322381

RESUMEN

We use the scattering matrix formalism to analyze photon blockade in coherently driven cavity quantum electrodynamics systems with a weak drive. By approximating the weak coherent drive by an input single- and two-photon Fock state, we reduce the computational complexity of the transmission and the two-photon correlation function from exponential to polynomial in the number of emitters. This enables us to easily analyze cavity-based systems containing ∼50 quantum emitters with modest computational resources. Using this approach we study the coherence statistics of photon blockade while increasing the number of emitters for resonant and detuned multiemitter cavity quantum electrodynamics systems-we find that increasing the number of emitters worsens photon blockade in resonant systems, and improves it in detuned systems. We also analyze the impact of inhomogeneous broadening in the emitter frequencies on the photon blockade through this system.

4.
Nano Lett ; 18(2): 1360-1365, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29377701

RESUMEN

Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest coupling strength (g/2π = 4.9 ± 0.3 GHz) and cooperativity (C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.

5.
Phys Rev Lett ; 121(8): 083601, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192607

RESUMEN

We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform.

6.
Nano Lett ; 17(3): 1782-1786, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28225630

RESUMEN

Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.

7.
Nano Lett ; 16(1): 212-7, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26695059

RESUMEN

We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.

8.
Opt Express ; 22(22): 26498-509, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25401801

RESUMEN

We demonstrate the design, fabrication and characterization of nanobeam cavities with multiple higher order modes. Designs with two high Q modes with frequency separations of an octave are introduced, and we fabricate such cavities exhibiting resonances with wavelength separations of up to 740 nm.

9.
Opt Lett ; 39(19): 5673-6, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25360956

RESUMEN

We demonstrate the design, fabrication, and characterization of nanobeam photonic crystal cavities in (111)-GaAs with multiple high-Q modes, with large frequency separations (up to 740 nm in experiment, i.e., a factor of 1.5 and up to an octave in theory). Such structures are crucial for efficient implementation of nonlinear frequency conversion. Here, we employ them to demonstrate sum-frequency generation from 1300 and 1950 nm to 780 nm. These wavelengths are particularly interesting for quantum frequency conversion between Si vacancy centers in diamond and the fiber-optic network.

10.
Opt Express ; 21(26): 32623-9, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24514856

RESUMEN

We present the design, fabrication, and characterization of high quality factor (Q ~10(3)) and small mode volume (V ~0.75 (λ/n)(3)) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 - 1.6 µm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

11.
Sci Rep ; 13(1): 4112, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914853

RESUMEN

Silicon carbide is among the leading quantum information material platforms due to the long spin coherence and single-photon emitting properties of its color center defects. Applications of silicon carbide in quantum networking, computing, and sensing rely on the efficient collection of color center emission into a single optical mode. Recent hardware development in this platform has focused on angle-etching processes that preserve emitter properties and produce triangularly shaped devices. However, little is known about the light propagation in this geometry. We explore the formation of photonic band gap in structures with a triangular cross-section, which can be used as a guiding principle in developing efficient quantum nanophotonic hardware in silicon carbide. Furthermore, we propose applications in three areas: the TE-pass filter, the TM-pass filter, and the highly reflective photonic crystal mirror, which can be utilized for efficient collection and propagating mode selection of light emission.

12.
Sci Rep ; 13(1): 19435, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945670

RESUMEN

Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the interaction of N atoms with an optical resonator, are at the core of atomic, optical and solid state physics. The full numerical simulation of TC dynamics scales exponentially with the number of atoms. By restricting the open quantum system to a single excitation, typical of experimental realizations in quantum optics, we analytically solve the TC model with an arbitrary number of atoms with linear complexity. This solution allows us to devise the Quantum Mapping Algorithm of Resonator Interaction with N Atoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time scaling, whose N+1 qubits represent atoms and a lossy cavity, while the dynamics is encoded through 2N entangling gates. Finally, we benchmark the robustness of the algorithm on a quantum simulator and superconducting quantum processors against the quantum master equation solution on a classical computer.

13.
Nat Commun ; 10(1): 3309, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346175

RESUMEN

Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA