Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell ; 74(4): 688-700.e3, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30930056

RESUMEN

Mutations in RNA-processing enzymes are increasingly linked to human disease. Telomerase RNA and related noncoding RNAs require 3' end-processing steps, including oligoadenylation. Germline mutations in poly(A)ribonuclease (PARN) cause accumulation of extended human telomerase RNA (hTR) species and precipitate dyskeratosis congenita and pulmonary fibrosis. Here, we develop nascent RNAend-seq to measure processing rates of RNA precursors. We find that mature hTR derives from extended precursors but that in PARN-mutant cells hTR maturation kinetically stalls and unprocessed precursors are degraded. Loss of poly(A)polymerase PAPD5 in PARN-mutant cells accelerates hTR maturation and restores hTR processing, indicating that oligoadenylation and deadenylation set rates of hTR maturation. The H/ACA domain mediates hTR maturation by precisely defining the 3' end, recruiting poly(A)polymerase activity, and conferring sensitivity to PARN regulation. These data reveal a feedforward circuit in which post-transcriptional oligoadenylation controls RNA maturation kinetics. Similar alterations in RNA processing rates may contribute to mechanisms of RNA-based human disease.


Asunto(s)
Disqueratosis Congénita/genética , Exorribonucleasas/genética , ARN Nucleotidiltransferasas/genética , ARN/genética , Telomerasa/genética , Disqueratosis Congénita/patología , Mutación de Línea Germinal/genética , Células HeLa , Humanos , Cinética , Procesamiento Postranscripcional del ARN/genética
2.
Nucleic Acids Res ; 50(21): 12400-12424, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35947650

RESUMEN

Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.


Asunto(s)
Metiltransferasas , Neuronas Motoras , ARN Nuclear Pequeño , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fenotipo , ARN Nuclear Pequeño/metabolismo , Metiltransferasas/metabolismo
3.
PLoS Genet ; 16(5): e1008815, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453722

RESUMEN

Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Animales , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Letales , Tamaño de los Órganos , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
4.
Nucleic Acids Res ; 45(6): 3068-3085, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27940556

RESUMEN

Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.


Asunto(s)
Daño del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Proteínas Cromosómicas no Histona/fisiología , Reparación del ADN , ADN de Cadena Simple/ultraestructura , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Proteínas de Drosophila/ultraestructura , Microscopía de Fuerza Atómica , Dominios Proteicos , Multimerización de Proteína , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/ultraestructura
5.
PLoS Genet ; 11(6): e1005260, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26110638

RESUMEN

Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Telómero/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Replicación del ADN , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple , Antígeno Nuclear de Célula en Proliferación/metabolismo , Telómero/metabolismo , Cromosoma Y/genética , Cromosoma Y/metabolismo
6.
PLoS Genet ; 11(6): e1005167, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26110528

RESUMEN

Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas/metabolismo , Telómero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Ciclo Celular/genética , Células Cultivadas , Daño del ADN/genética , Replicación del ADN , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Fibroblastos/fisiología , Genes p53 , Humanos , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas/genética , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
7.
Genes Dev ; 24(15): 1596-601, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20679394

RESUMEN

Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Regulación de la Expresión Génica , Modelos Moleculares , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/aislamiento & purificación
8.
Neurobiol Dis ; 105: 42-50, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28502804

RESUMEN

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Trastornos del Movimiento/etiología , Atrofia Muscular Espinal/complicaciones , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Fenotipo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora
9.
PLoS Genet ; 10(5): e1004305, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24786584

RESUMEN

The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis.


Asunto(s)
Citocinesis , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Huso Acromático
10.
Proc Natl Acad Sci U S A ; 106(7): 2271-6, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19181850

RESUMEN

Several proteins have been identified that protect Drosophila telomeres from fusion events. They include UbcD1, HP1, HOAP, the components of the Mre11-Rad50-Nbs (MRN) complex, the ATM kinase, and the putative transcription factor Woc. Of these proteins, only HOAP has been shown to localize specifically at telomeres. Here we show that the modigliani gene encodes a protein (Moi) that is enriched only at telomeres, colocalizes and physically interacts with HOAP, and is required to prevent telomeric fusions. Moi is encoded by the bicistronic CG31241 locus. This locus produces a single transcript that contains 2 ORFs that specify different essential functions. One of these ORFs encodes the 20-kDa Moi protein. The other encodes a 60-kDa protein homologous to RNA methyltransferases that is not required for telomere protection (Drosophila Tat-like). Moi and HOAP share several properties with the components of shelterin, the protein complex that protects human telomeres. HOAP and Moi are not evolutionarily conserved unlike the other proteins implicated in Drosophila telomere protection. Similarly, none of the shelterin subunits is conserved in Drosophila, while most human nonshelterin proteins have Drosophila homologues. This suggests that the HOAP-Moi complex, we name "terminin," plays a specific role in the DNA sequence-independent assembly of Drosophila telomeres. We speculate that this complex is functionally analogous to shelterin, which binds chromosome ends in a sequence-dependent manner.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Telómero/ultraestructura , Alelos , Animales , ADN/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Intrones , Modelos Biológicos , Mutación , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética
11.
FEBS Lett ; 596(1): 42-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817067

RESUMEN

Mutations in many genes that control the expression, the function, or the stability of telomerase cause telomere biology disorders (TBDs), such as dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia. Mutations in a subset of the genes associated with TBDs cause reductions of the telomerase RNA moiety hTR, thus limiting telomerase activity. We have recently found that loss of the trimethylguanosine synthase TGS1 increases both hTR abundance and telomerase activity and leads to telomere elongation. Here, we show that treatment with the S-adenosylmethionine analog sinefungin inhibits TGS1 activity, increases the hTR levels, and promotes telomere lengthening in different cell types. Our results hold promise for restoring telomere length in stem and progenitor cells from TBD patients with reduced hTR levels.


Asunto(s)
Metiltransferasas
12.
Nat Commun ; 13(1): 2302, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484160

RESUMEN

Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5' end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3' end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging.


Asunto(s)
Telomerasa , Guanosina , Humanos , ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
13.
Nat Cell Biol ; 5(1): 82-4, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12510197

RESUMEN

HOAP (HP1/ORC-associated protein) has recently been isolated from Drosophila melanogaster embryos as part of a cytoplasmic complex that contains heterochromatin protein 1 (HP1) and the origin recognition complex subunit 2 (ORC2). Here, we show that caravaggio, a mutation in the HOAP-encoding gene, causes extensive telomere-telomere fusions in larval brain cells, indicating that HOAP is required for telomere capping. Our analyses indicate that HOAP is specifically enriched at mitotic chromosome telomeres, and strongly suggest that HP1 and HOAP form a telomere-capping complex that does not contain ORC2.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mapeo Cromosómico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Telómero/fisiología , Animales , Drosophila melanogaster/genética , Embrión no Mamífero/fisiología , Embrión no Mamífero/ultraestructura , Telómero/ultraestructura
14.
Methods Mol Biol ; 2281: 241-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847963

RESUMEN

Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of biological samples with a nanometric resolution. Determination of the physical properties of biological molecules at a single-molecule level is achieved through topographic analysis of the sample adsorbed on a flat and smooth surface. AFM has been widely used for the structural analysis of nucleic acid-protein interactions, providing insights on binding specificity and stoichiometry of proteins forming complexes with DNA substrates. Analysis of single-stranded DNA-binding proteins by AFM requires specific single-stranded/double-stranded hybrid DNA molecules as substrates for protein binding. In this chapter we describe the protocol for AFM characterization of binding properties of Drosophila telomeric protein Ver using DNA constructs that mimic the structure of chromosome ends. We provide details on the methodology used, including the procedures for the generation of DNA substrates, the preparation of samples for AFM visualization, and the data analysis of AFM images. The presented procedure can be adapted for the structural studies of any single-stranded DNA-binding protein.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , ADN de Cadena Simple/química , Drosophila melanogaster/genética , Microscopía de Fuerza Atómica , Unión Proteica , Imagen Individual de Molécula , Telómero/genética , Telómero/metabolismo
15.
J Mol Biol ; 432(15): 4305-4321, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32512004

RESUMEN

The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.


Asunto(s)
Drosophila/genética , Retroelementos , Telómero/genética , Animales , Regulación de la Expresión Génica , ARN Interferente Pequeño/genética , Transducción de Señal , Transcripción Genética
16.
Cell Rep ; 30(5): 1358-1372.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023455

RESUMEN

Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.


Asunto(s)
Metiltransferasas/deficiencia , ARN/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Biocatálisis , Cuerpos Enrollados/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Humanos , Metilación , Metiltransferasas/genética , Modelos Biológicos , Mutación/genética , Poliadenilación , Caperuzas de ARN/metabolismo , Fracciones Subcelulares/metabolismo
17.
BMC Genet ; 9: 32, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18405358

RESUMEN

BACKGROUND: The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5) have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. RESULTS: Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. CONCLUSION: Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.


Asunto(s)
Drosophila melanogaster/genética , Genes de Insecto , Infertilidad Masculina/genética , Mutación , Cromosoma Y/ultraestructura , Animales , Masculino , Meiosis , Fenotipo , Espermatocitos/ultraestructura
18.
Nat Commun ; 7: 10405, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26778495

RESUMEN

Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection.


Asunto(s)
Proteínas de Drosophila/metabolismo , Separasa/metabolismo , Telómero/metabolismo , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Drosophila , Proteínas de Drosophila/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Separasa/genética , Telómero/genética
19.
Open Biol ; 6(8)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27512140

RESUMEN

AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Células Cultivadas , Senescencia Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitosis , Membrana Nuclear/metabolismo , Telómero/metabolismo , Homeostasis del Telómero
20.
Front Oncol ; 3: 112, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675571

RESUMEN

Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA