Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Dev Res ; 85(5): e22244, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138855

RESUMEN

Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Inmunoterapia , Nanopartículas , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanopartículas/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/administración & dosificación , Animales , Terapia Combinada , Sistemas de Liberación de Medicamentos/métodos , Nanovacunas
2.
Mol Cell Biochem ; 478(7): 1573-1598, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36434145

RESUMEN

Today, RNA aptamers are being considered promising theranostic tools against a wide variety of disorders. RNA aptamers can fold into complex shapes and bind to diverse nanostructures, macromolecules, cells, and viruses. It is possible to isolate RNA aptamers from a vast pool of nucleic acids via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method. As therapeutics, aptamers have great potential because of their ability to bind to proteins and selectively limit their activities with negligible side effects. Several RNA aptamers with potential implications in cancer diagnosis are known to confer a great affinity for single-stranded DNA molecules, long non-coding RNAs, circulating tumor cells, vascular endothelial growth factors, and tissue and sera-derived exosomes in patients with different malignancies. Furthermore, clinical investigations have revealed the efficacy of RNA aptamer-based agents in imaging modalities. This review seeks to deliver new insights into the development, classification, nanomerization, and modification of RNA aptamers, as well as their applications in cancer theranostics. The aptamers' mechanism of action and their interest to clinical trials as theranostic agents are also discussed.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Humanos , Aptámeros de Nucleótidos/uso terapéutico , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Proteínas
3.
Cell Biol Int ; 46(9): 1320-1344, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35830711

RESUMEN

Immune-mediated diseases (IMDs) are chronic conditions that have an immune-mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti-inflammatory medications can be reduced. Still, there are many problems with using short-interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA-based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid-based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid-lipid particles, polymeric-based siRNA nanocarriers, polyethylenimine (PEI)-based nanosystems, chitosan-based nanoformulations, inorganic material-based siRNA nanocarriers, and hybrid-based delivery systems. We have also introduced novel siRNA-based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.


Asunto(s)
Nanomedicina , Nanopartículas , Humanos , Inflamación/genética , Inflamación/terapia , Lípidos , Nanopartículas/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/genética
4.
Environ Res ; 208: 112644, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979127

RESUMEN

Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Colorimetría , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Tensoactivos
5.
Molecules ; 27(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36234843

RESUMEN

High concentrations of antibiotics have been identified in aqueous media, which has diminished the quality of water resources. These compounds are usually highly toxic and have low biodegradability, and there have been reports about their mutagenic or carcinogenic effects. The aim of this study was to apply zero-valent iron-oxide nanoparticles in the presence of hydrogen peroxide and the sonolysis process for the removal of the amoxicillin antibiotic from aqueous media. In this study, zero-valent iron nanoparticles were prepared by an iron chloride reduction method in the presence of sodium borohydride (NaBH4), and the obtained nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating-sample magnetometry (VSM). Then, using a Fenton-like process, synthetic wastewater containing 100 to 500 mg/L amoxicillin antibiotic was investigated, and the effects of different parameters, such as the frequency (1 and 2 kHz), contact time (15 to 120 min), the concentration of hydrogen peroxide (0.3%, 0.5%, and 6%), the dose of zero-valent iron nanoparticles (0.05, 0.1, 0.5 g/L), and pH (3, 5, 10) were thoroughly studied. A pH of 3, hydrogen peroxide concentration of 3%, ultrasonic-wave frequency of 130 kHz, zero-valent iron nanoparticles of 0.5 g/L, and contaminant concentration of 100 mg/L were obtained as the optimal conditions of the combined US/H2O2/nZVI process. Under the optimal conditions of the combined process of zero-valent iron nanoparticles and hydrogen peroxide in the presence of ultrasonic waves, a 99.7% removal efficiency of amoxicillin was achieved in 120 min. The results show that the combined US/H2O2/nZVI process could be successfully used to remove environmental contaminants, including antibiotics such as amoxicillin, with a high removal percentage.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Amoxicilina , Antibacterianos , Cloruros , Peróxido de Hidrógeno/química , Hierro/química , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/química
6.
Inflamm Res ; 70(9): 939-957, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34319417

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS: A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION: From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Complicaciones de la Diabetes/enzimología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/enzimología , Regulación Enzimológica de la Expresión Génica , Animales , Berberina/química , Activación Enzimática , Glucosa/metabolismo , Homeostasis , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Fosforilación , Polifenoles/química , Conformación Proteica , Dominios Proteicos , Ratas , Tiazolidinedionas/química , Ácido Tióctico/química , Xilosa/química
7.
J Fluoresc ; 31(2): 373-383, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398675

RESUMEN

We investigate the linear and nonlinear optical property of Morin (MN) at different concentration (1 × 10-6 and 5 × 10-6 M) within AOT reversed micelle prepared by water-in-decane microemulsion having a constant molar ratio of water-to-surfactant molecules of 40 (W = [H2O]/[AOT] = 40) as well as the function of mass fraction of nano-droplet (MFD) values of 0.01,0.04, 0.07, and 0.1 by using UV-Visible, Fluorescence, FTIR, and Z-scan techniques. The steady-state measurement indicates that the presence of microenvironment can greatly affect the tautomeric structure of morin and also Morin property in microenvironment depends upon the amount of oil and Morin concentration. The increase in dipole moment from the ground state to excited state in microenvironment indicate the change in the molecular structure on morin. Morin does not show any nonlinear absorption property but the nonlinear refractive index is observed as a function of Morin concentration as well as MFD values which are due to the thermal agitation of formed dimers. Morin nonlinearity.

8.
J Mater Sci Mater Med ; 32(12): 147, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34862910

RESUMEN

In this study, paclitaxel (PTX)-loaded pH-responsive niosomes modified with ergosterol were developed. This new formulation was characterized in terms of size, morphology, encapsulation efficiency (EE), and in vitro release at pH 5.2 and 7.4. The in vitro efficacy of free PTX and niosome/PTX was assessed using MCF7, Hela, and HUVEC cell lines. In order to evaluate the in vivo efficacy of niosomal PTX in rats as compared to free PTX, the animals were intraperitoneally administered with 2.5 mg/kg and 5 mg/kg niosomal PTX for two weeks. Results showed that the pH-responsive niosomes had a nanometric size, spherical morphology, 77% EE, and pH-responsive release in pH 5.2 and 7.4. Compared with free PTX, we found markedly lower IC50s when cancer cells were treated for 48 h with niosomal PTX, which also showed high efficacy against human cancers derived from cervix and breast tumors. Moreover, niosomal PTX induced evident morphological changes in these cell lines. In vivo administration of free PTX at the dose of 2.5 mg/kg significantly increased serum biochemical parameters and liver lipid peroxidation in rats compared to the control rats. The situation was different when niosomal PTX was administered to the rats: the 5 mg/kg dosage of niosomal PTX significantly increased serum biochemical parameters, but the group treated with the 2.5 mg/kg dose of niosomal PTX showed fewer toxic effects than the group treated with free PTX at the same dosage. Overall, our results provide proof of concept for encapsulating PTX in niosomal formulation to enhance its therapeutic efficacy.


Asunto(s)
Liposomas/química , Paclitaxel/farmacología , Animales , Antineoplásicos/sangre , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Liberación de Fármacos , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Peroxidación de Lípido , Células MCF-7 , Masculino , Paclitaxel/sangre , Paclitaxel/química , Paclitaxel/farmacocinética , Ratas , Ratas Sprague-Dawley
9.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803502

RESUMEN

Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.


Asunto(s)
Artritis Reumatoide/diagnóstico , Artritis Reumatoide/terapia , Inflamación/diagnóstico , Inflamación/terapia , Nanoestructuras/uso terapéutico , Nanomedicina Teranóstica , Animales , Antirreumáticos/uso terapéutico , Artritis Reumatoide/diagnóstico por imagen , Humanos , Inflamación/diagnóstico por imagen
10.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34638660

RESUMEN

Nanotechnology has revolutionized novel drug delivery strategies through establishing nanoscale drug carriers, such as niosomes, liposomes, nanomicelles, dendrimers, polymeric micelles, and nanoparticles (NPs). Owing to their desirable cancer-targeting efficacy and controlled release, these nanotherapeutic modalities are broadly used in clinics to improve the efficacy of small-molecule inhibitors. Poly(ADP-ribose) polymerase (PARP) family members engage in various intracellular processes, including DNA repair, gene transcription, signal transduction, cell cycle regulation, cell division, and antioxidant response. PARP inhibitors are synthetic small-molecules that have emerged as one of the most successful innovative strategies for targeted therapy in cancer cells harboring mutations in DNA repair genes. Despite these advances, drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors in the clinic. Recently, the development of practical nanotechnology-based drug delivery systems has tremendously improved the efficacy of PARP inhibitors. NPs can specifically accumulate in the leaky vasculature of the tumor and cancer cells and release the chemotherapeutic moiety in the tumor microenvironment. On the contrary, NPs are usually unable to permeate across the body's normal organs and tissues; hence the toxicity is zero to none. NPs can modify the release of encapsulated drugs based on the composition of the coating substance. Delivering PARP inhibitors without modulation often leads to the toxic effect; therefore, a delivery vehicle is essential to encapsulate them. Various nanocarriers have been exploited to deliver PARP inhibitors in different cancers. Through this review, we hope to cast light on the most innovative advances in applying PARP inhibitors for therapeutic purposes.


Asunto(s)
Nanopartículas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299593

RESUMEN

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world's environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.

12.
Molecules ; 26(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401658

RESUMEN

The blood-brain barrier (BBB) is the protective sheath around the brain that protects the sensitive microenvironments of the brain. However, certain pathogens, viruses, and bacteria disrupt the endothelial barrier and cause infection and hence inflammation in meninges. Macromolecular therapeutics are unable to cross the tight junctions, thereby limiting their bioavailability in the brain. Recently, nanotechnology has brought a revolution in the field of drug delivery in brain infections. The nanostructures have high targeting accuracy and specificity to the receptors in the case of active targeting, which have made them the ideal cargoes to permeate across the BBB. In addition, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by the pathogens. This review focuses on the nanotechnology-based drug delivery approaches for exploration in brain infections, including meningitis. Viruses, bacteria, fungi, or, rarely, protozoa or parasites may be the cause of brain infections. Moreover, inflammation of the meninges, called meningitis, is presently diagnosed using laboratory and imaging tests. Despite attempts to improve diagnostic instruments for brain infections and meningitis, due to its complicated and multidimensional nature and lack of successful diagnosis, meningitis appears almost untreatable. Potential for overcoming the difficulties and limitations related to conventional diagnostics has been shown by nanoparticles (NPs). Nanomedicine now offers new methods and perspectives to improve our knowledge of meningitis and can potentially give meningitis patients new hope. Here, we review traditional diagnosis tools and key nanoparticles (Au-NPs, graphene, carbon nanotubes (CNTs), QDs, etc.) for early diagnosis of brain infections and meningitis.


Asunto(s)
Encefalopatías/diagnóstico , Portadores de Fármacos/química , Grafito/química , Meningitis/diagnóstico , Nanopartículas/química , Encefalopatías/microbiología , Portadores de Fármacos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Nanotecnología/métodos
13.
Molecules ; 26(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809917

RESUMEN

Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.


Asunto(s)
Portadores de Fármacos , Nanomedicina , Mucílago de Planta , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Humanos , Gomas de Plantas/química , Gomas de Plantas/uso terapéutico , Mucílago de Planta/química , Mucílago de Planta/uso terapéutico
14.
Molecules ; 26(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800797

RESUMEN

This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO2. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.


Asunto(s)
Materiales de Construcción/análisis , Nanoestructuras/química
15.
Environ Monit Assess ; 193(12): 800, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34773492

RESUMEN

Recent advances in nano-enabled agriculture raised hope in the efficient delivery of bioactive minerals to crops. Nanocomposites (NCPs) are promising technologies in soil fertilizing without compromising environmental contamination. NCPs have shown positive impacts on plant growth and nanofortification of crop yield. Here, we have synthesized a nanocomposite that could induce the positive impacts of the Mn, Fe, and Ce nanoparticles for the crops. The NCPs were extensively characterized and applied at three levels 100, 250, and 500 ppm on T. aestivum L. seeds for 10 days. The germination, biomass, and elongation have been measured as the main physiological parameters of the plant. The total content of chlorophyll, carotenoids, and enzymatic and non-enzymatic antioxidant in response to NCPs was quantified. The concentration of essential minerals (iron and manganese) and the non-essential element of cerium in roots and shoots were quantified using inductively coupled plasma mass spectrometry (ICP-MS). Briefly, the germination rate increased by 15%; total chlorophyll and carotenoid were augmented by 61% and 38%, respectively, in exposure to 100 ppm. Higher uptake of micronutrient Fe and Mn in shoots and led to higher yield production by 14% and 18%, respectively. A positive correlation between the increasing dose of NCPs and the total content of the superoxide dismutase (SOD), and peroxidase (POD) were quantified. Overall, the results indicate the high potential of NCPs applications in agricultural practice.


Asunto(s)
Nanocompuestos , Contaminantes del Suelo , Clorofila , Monitoreo del Ambiente , Compuestos Férricos , Fotosíntesis , Raíces de Plantas , Triticum
16.
J Fluoresc ; 30(5): 1181-1187, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691262

RESUMEN

In this work, 1.8 nm graphene quantum dots (GQDs), exhibiting bright blue fluorescence, were prepared using a bottom-up synthesis from citric acid. The fluorescence of the GQDs could be almost completely quenched (about 96%) by adding Hg2+. Quenching was far less efficient with other similar heavy metals, Tl+, Pb2+ and Bi3+. Fluorescence could be near quantitatively restored through the introduction of thiocyanate. This "turn-on" fluorescence can thus be used to detect both or either environmental and physiological contaminants mercury and thiocyanate and could prove useful for the development of simple point-of-care diagnostics in the future. Graphical Abstract.


Asunto(s)
Colorantes Fluorescentes/química , Grafito/química , Mercurio/análisis , Puntos Cuánticos/química , Tiocianatos/análisis , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia
17.
Int J Biol Macromol ; 265(Pt 1): 130901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490383

RESUMEN

This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Hidrogeles/uso terapéutico , Almidón/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Concentración de Iones de Hidrógeno , Portadores de Fármacos/uso terapéutico
18.
Biomed Mater ; 19(5)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39074507

RESUMEN

Quantum dots (QDs) are with exceptional physicochemical and biological properties, making them highly versatile for a wide range of applications in cancer therapy. One of the key features of QDs is their unique electronic structure, which gives them functional attributes. Notably, their photoluminescence can be strong and adjustable, allowing them to be effectively used in fluorescence based diagnosis such as biosensing and bioimaging. In addition, QDs demonstrate an impressive capacity for loading cargo, making them ideal for drug delivery applications. Moreover, their ability to absorb incident radiation positions QDs as promising candidates for cancer-killing techniques like photodynamic therapy. The objective of this comprehensive review is to present a current and comprehensive overview of the recent advancements in utilizing QDs as multifunctional and innovative biomaterials. This review focuses on elucidating the biological, electronic, and physicochemical properties of QDs, along with discussing the technical advancements in QD synthesis. Furthermore, it thoroughly explores the progress made in utilizing QDs for diagnosis based on biosensing, bioimaging, and therapy applications including drug delivery and necrosis, highlighting their significant potential in the field of cancer treatment. Furthermore, the review addresses the current limitations associated with QDs in cancer therapy and provides valuable insights into future directions, thereby facilitating further advancements in this field. By presenting a comprehensive and well-structured overview, this review serves as an authoritative and informative resource that can guide future research endeavors and foster continued progress in the field of QDs for cancer therapy.


Asunto(s)
Técnicas Biosensibles , Sistemas de Liberación de Medicamentos , Neoplasias , Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Técnicas Biosensibles/métodos , Fotoquimioterapia/métodos , Materiales Biocompatibles/química , Antineoplásicos/química , Antineoplásicos/administración & dosificación
19.
Int J Biol Macromol ; 276(Pt 2): 133900, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019377

RESUMEN

An innovative pH-responsive nanocomposite, comprising agarose (AGA) modified with polyethylene glycol (PEG) hydrogel and coated with ferric oxide (Fe2O3), has been formulated to facilitate the precise administration of 5-fluorouracil (5-Fu) to breast cancer cells. By utilizing a double emulsion technique, the size of the nanocomposites was significantly reduced through the application of almond oil; the inclusion of span 80 further improved their uniformity. The physiochemical properties of the nanocomposite were thoroughly examined by Fourier Transformed Infrared (FT-IR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM), Vibrating Sample Magnetometer (VSM), dynamic light scattering (DLS), and zeta potential tests. The verification of the uniform particle distribution was achieved by employing FE-SEM and VSM analyses. The average diameter of the particles was 223 nm, and their zeta potential was -47.6 mV. In addition, the nanocomposite exhibited a regulated release of 5-Fu at pH 5.4 and pH 7.4, as indicated by an in vitro drug release profile. PEG-AGA- Fe2O3@5-Fu exhibited biocompatibility, as indicated by the lack of deleterious effects observed in tumor cells. This revolutionary nanocomposite demonstrates exceptional promise for breast cancer treatment, underscoring its significance as a major advancement in the pursuit of novel nanotechnologies for cancer therapy.


Asunto(s)
Compuestos Férricos , Fluorouracilo , Hidrogeles , Nanocompuestos , Polietilenglicoles , Sefarosa , Fluorouracilo/química , Fluorouracilo/farmacología , Polietilenglicoles/química , Sefarosa/química , Compuestos Férricos/química , Humanos , Nanocompuestos/química , Hidrogeles/química , Liberación de Fármacos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
20.
Front Bioeng Biotechnol ; 12: 1436297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055339

RESUMEN

Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA