RESUMEN
Testing of ecological, biogeographical and phylogenetic hypotheses of mycorrhizal traits requires a comprehensive reference dataset about plant mycorrhizal associations. Here we present a database, FungalRoot, which summarizes publicly available data about vascular plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied with rich metadata. We compiled and digitized data about plant mycorrhizal colonization in nine widespread languages. The present version of the FungalRoot database contains 36 303 species-by-site observations for 14 870 plant species, tripling the previously available compiled information about plant mycorrhizal associations. Based on these data, we provide a recommended list of genus-level plant mycorrhizal associations, based on the majority of data for species and careful analysis of conflicting data. The majority of ectomycorrhizal and ericoid mycorrhizal plants are trees (92%) and shrubs (85%), respectively. The majority of arbuscular and nonmycorrhizal plant species are herbaceous (50% and 70%, respectively). Our publicly available database is a powerful resource for mycorrhizal scientists and ecologists. It features possibilities for dynamic updating and addition of data about plant mycorrhizal associations. The new database will promote research on plant and fungal biogeography and evolution, and on links between above- and belowground biodiversity and ecosystem functioning.
Asunto(s)
Micorrizas , Biodiversidad , Ecosistema , Filogenia , Raíces de Plantas , PlantasAsunto(s)
Micorrizas , Benchmarking , Micorrizas/fisiología , Raíces de Plantas/fisiología , Plantas , SimbiosisRESUMEN
Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
Asunto(s)
Micorrizas , Micorrizas/genética , Árboles/microbiología , Filogenia , Biodiversidad , Hongos/genética , Plantas/microbiología , Suelo , Microbiología del SueloRESUMEN
Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.
Asunto(s)
Microbiota , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Plantas/microbiología , Hojas de la Planta/microbiología , Péptidos , Raíces de Plantas/microbiologíaRESUMEN
A characteristic trait of plants living in harsh environments is their association with fungal endophytes, which enable them to survive under extreme stress. Abiotic stress resistance in agro-ecosystems, particularly in arid and semi-arid regions, can be increased by inoculating these fungal endophytes on plants other than their original hosts. The present study is therefore focused on the possible role of three halotolerant endophytic fungi, i.e., Periconia macrospinosa, Neocamarosporium goegapense, and N. chichastianum, isolated from roots of salt lake plants growing in the central desert of Iran, in alleviating the adverse effects of salinity and drought stresses on barley under greenhouse conditions. To perform this experiment, a randomized block design was applied with three factors: fungi (four levels including three halotolerant endophytic species and control), salinity (three levels including 8, 12, and 16 dS/m), and drought (four levels including 100, 80, 60, 40 percent field capacity). All plants were measured for growth characteristics, chlorophyll concentration, proline content, and antioxidant enzyme activities. A three-way analysis of variance indicated that all three fungal endophytes, to varying extents, induced the barley plants' resistance to salinity and drought, and their combined effects. Additionally, we found that fungal endophytes were more effective when the barley plants were subjected to higher levels of salinity and drought. Under the stress of salinity and drought, a strong relationship between inoculation of fungal endophytes and enhancement of biomass, shoot length, chlorophyll concentration, proline content, and activity of catalase, peroxidase, and superoxide dismutase was indicated. We discussed that increased root growth, proline content, and antioxidant enzyme activity are the main physiological and biochemical mechanisms causing stress resistance in barley plants inoculated with endophytes. Our research findings illustrate that fungal endophytes have a substantial potential for increasing abiotic stress tolerance in barley plants, which can be applied in agricultural ecosystems.
RESUMEN
The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.
Asunto(s)
Alphaproteobacteria/genética , Betaproteobacteria/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Rhizobium/genética , Simbiosis/genética , Ecosistema , Fabaceae/microbiología , Transferencia de Gen Horizontal , Mimosa/microbiología , Fijación del Nitrógeno , Rhizobium/clasificaciónRESUMEN
Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.