Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 316(6): H1528-H1537, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30925081

RESUMEN

Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that is closely linked to the development of cardiovascular disease. TNFα activates NADPH oxidase 1 (Nox1) and reactive oxygen species (ROS), including superoxide (O2·-), production extracellularly is required for subsequent signaling in vascular smooth muscle cells (VSMCs). Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that is activated by oxidation of associated thioredoxin. The role of ASK1 in Nox1-mediated signaling by TNFα is poorly defined. We hypothesized that ASK1 is required for TNFα receptor endocytosis and subsequent inflammatory TNFα signaling. We employed a knockdown strategy to explore the role of ASK1 in TNFα signaling in VSMCs. siRNA targeting ASK1 had no effect on TNFα-induced extracellular O2·- production. However, siASK1 inhibited receptor endocytosis as well as phosphorylation of two endocytosis-related proteins, dynamin1 and caveolin1. Intracellular O2·- production was subsequently reduced, as were other inflammatory signaling steps including NF-κB activation, IL-6 production, inducible nitric oxide synthase and VCAM expression, and VSMC proliferation. Prolonged exposure to TNFα (24 h) increased tumor necrosis factor receptor (TNFR) subtype 1 and 2 expression, and these effects were also attenuated by siASK1. ASK1 coimmunoprecipitated with both Nox1 and the leucine rich repeat containing 8A anion channel, two essential components of the TNFR1 signaling complex. Activation of ASK1 by autophosphorylation at Thr845 occurs following thioredoxin dissociation, and this requires the presence of Nox1. Thus, Nox1 is part of the multiprotein ASK1 signaling complex. In response to TNFα, ASK1 is activated by Nox1-derived oxidants, and this plays a critical role in translating these ROS into a physiologic response in VSMCs. NEW & NOTEWORTHY Apoptosis signal-regulating kinase 1 (ASK1) drives dynamin1 and caveolin1 phosphorylation and TNFα receptor endocytosis. ASK1 modulates TNFα-induced NF-κB activation, survival, and proliferation. ASK1 and NADPH oxidase 1 (Nox1) physically associate in a multiprotein signaling complex. Nox1 is required for TNFα-induced ASK1 activation.


Asunto(s)
Endocitosis , MAP Quinasa Quinasa Quinasa 5/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , NADPH Oxidasa 1/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Superóxidos/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Células Cultivadas , Endocitosis/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/genética , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , NADPH Oxidasa 1/genética , Receptores Tipo I de Factores de Necrosis Tumoral/agonistas , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
2.
Dev Cell ; 48(2): 229-244.e4, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30661986

RESUMEN

The mechanisms that pattern and maintain dendritic arbors are key to understanding the principles that govern nervous system assembly. The activity of presynaptic axons has long been known to shape dendrites, but activity-independent functions of axons in this process have remained elusive. Here, we show that in Caenorhabditis elegans, the axons of the ALA neuron control guidance and extension of the 1° dendrites of PVD somatosensory neurons independently of ALA activity. PVD 1° dendrites mimic ALA axon guidance defects in loss-of-function mutants for the extracellular matrix molecule MIG-6/Papilin or the UNC-6/Netrin pathway, suggesting that axon-dendrite adhesion is important for dendrite formation. We found that the SAX-7/L1CAM cell adhesion molecule engages in distinct molecular mechanisms to mediate extensions of PVD 1° dendrites and maintain the ALA-PVD axon-dendritic fascicle, respectively. Thus, axons can serve as critical scaffolds to pattern and maintain dendrites through contact-dependent but activity-independent mechanisms.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Dendritas/metabolismo , Plasticidad Neuronal/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA