Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 125(44): 9658-9679, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723518

RESUMEN

Photoelectron spectra of the niobium-molybdenum diatomic anion, obtained at 488 and 514 nm, display vibrationally resolved transitions from the ground state and one excited electronic state of the anion to the ground state and one excited electronic state of the neutral molecule. The electron affinity of NbMo is measured to be 1.130 ± 0.005 eV. Its 2Δ3/2 spin-orbit component is observed to lie 870 ± 20 cm-1 above its previously identified 2Δ5/2 ground state. For 93Nb98Mo, vibrational energies measured for levels up to v = 4 for the 2Δ5/2 and 2Δ3/2 states give harmonic frequency and anharmonicity constant values of ωe = 492 ± 12 cm-1 and ωexe = 8.0 ± 3.2 cm-1, the former value corresponding to a force constant of 6.80 ± 0.35 mdyn/Å. These two vibrational parameters suggest a bond dissociation energy that is too low by at least a factor of 3, indicating that the ground state potential energy curve of NbMo deviates markedly from a Morse potential at higher energies. An excited electronic state of NbMo, assigned as a 2Σ+ state, is observed at 2900 ± 25 cm-1 (T0). Vibrational energies up to v = 8 in this excited state give values of ωe = 544 ± 8 cm-1 and ωexe = 1.9 ± 1.2 cm-1 for 93Nb98Mo. The former value corresponds to a high vibrational force constant of 8.30 ± 0.25 mdyn/Å. Both doublet states of the neutral molecule are accessed from the anion ground state, which is assigned as 1Σ+. For the 93Nb98Mo- anion, the fundamental vibrational frequency (ΔG1/2) is 484 ± 15 cm-1. Electron affinity data indicate that the bond dissociation energy of NbMo- is 0.213 ± 0.005 eV greater than that of neutral NbMo, whose previously reported value then gives D0 = 4.85 ± 0.27 eV for the anion. An excited state of the anion lying 3050 ± 25 cm-1 (T0) above its ground state is assigned as 3Δ, and the energies of its spin-orbit components above the 3Δ3 lowest energy level are measured to be 450 ± 20 cm-1 (3Δ2) and 1100 ± 20 cm-1 (3Δ1). Their uneven spacing suggests that the energy of the 3Δ2 level is lowered by interaction with a higher energy Ω = 2 anion state. The vibrational frequency (ΔG1/2) for the 3Δ1 and 3Δ2 states is measured to be 433 ± 20 cm-1. Bond length differences among the observed states are estimated from Franck-Condon fits to vibrational band intensity profiles. When combined with the previously reported NbMo bond length, these provide bond length estimates for the ground state of the anion (1.940 ± 0.025 Å) and for the observed excited states. These species offer extreme examples of multiple metal-metal bonding, with formal bond orders of 51/2 for the 2Δ ground and 2Σ+ excited doublet states of NbMo, 6 for the singlet ground state of the anion, and 5 for its low-lying triplet state. The relationships among their bonding properties and those of related multiply bonded transition metal dimers are discussed.

2.
PLoS One ; 11(1): e0147036, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26761437

RESUMEN

Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation.


Asunto(s)
Biodegradación Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Compuestos de Metilmercurio/metabolismo , Operón , Dióxido de Silicio , Pruebas Antimicrobianas de Difusión por Disco , Resistencia a Antineoplásicos , Escherichia coli/efectos de los fármacos , Compuestos de Metilmercurio/farmacología , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA