Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microb Pathog ; 189: 106595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387848

RESUMEN

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Titanio , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Biopelículas , Nanopartículas del Metal/química
2.
Arch Microbiol ; 205(8): 282, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432479

RESUMEN

In the present study, the individual cultures of Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae) were treated with morphologically modified silver nanoparticles (Ag NPs) and were found to display zones of inhibition of ~ 8 mm, 16 mm, 20 mm, and 22 mm (P. mirabilis) and 6 mm, 14 mm, 20 mm, and 24 mm (K. pneumoniae) at concentrations of 25 µg/ml, 50 µg/mL, 75 µg/mL, and 100 µg/mL, respectively. In addition, turbidity tests were performed based on O. D. values, which exhibited 92% and 90% growth inhibitions at 100 µg/mL concentration for P. mirabilis and K. pneumoniae, respectively. Furthermore, the IC50 concentration of Ag NPs was established for A549 lung cancer cells and found to be at 500 µg/mL. Evidently, the morphological variation of Ag NPs treated A549 lung cancer cells was exhibited with differential morphology studied by phase-contrast microscopy. The results demonstrated that the synthesized Ag NPs was not only efficient against gram-positive bacteria but also against gram-negative bacteria and A549 cancer cells, suggesting that the potential of these biosynthesized Ag NPs is a future drug discovery source for inhibiting bacteria and cancer cells.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Plata/farmacología , Descubrimiento de Drogas , Klebsiella pneumoniae , Proteus mirabilis
3.
Artículo en Inglés | MEDLINE | ID: mdl-37216283

RESUMEN

Four novel bacterial strains, designated as RG327T, SE158T, RB56-2T and SE220T, were isolated from wet soil in the Republic of Korea. To determine their taxonomic positions, the strains were fully characterized. On the basis of genomic information (16S rRNA gene and draft genome sequences), all four isolates represent members of the genus Sphingomonas. The draft genomes of RG327T, SE158T, RB56-2T and SE220T consisted of circular chromosomes of 2 226 119, 2 507 338, 2 593 639 and 2 548 888 base pairs with DNA G+C contents of 64.6, 63.6, 63.0 and 63.1 %, respectively. All the isolates contained ubiquinone Q-10 as the predominant quinone compound and a fatty acid profile with C16 : 0, C17 : 1ω6c, C18 : 1 2-OH, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) as the major fatty acids, supporting the affiliation of strains RG327T, SE158T, RB56-2T and SE220T to the genus Sphingomonas. The major identified polar lipids in all four novel isolates were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Moreover, the physiological, biochemical results and low level of DNA-DNA relatedness and average nucleotide identity values allowed the phenotypic and genotypic differentiation of RG327T, SE158T, RB56-2T and SE220T from other species of the genus Sphingomonas with validly published names and indicated that they represented novel species of the genus Sphingomonas, for which the names Sphingomonas anseongensis sp. nov. (RG327T = KACC 22409T = LMG 32497T), Sphingomonas alba sp. nov. (SE158T = KACC 224408T = LMG 324498T), Sphingomonas brevis (RB56-2T = KACC 22410T = LMG 32496T) and Sphingomonas hankyongi sp. nov., (SE220T = KACC 22406T = LMG 32499T) are proposed.


Asunto(s)
Ácidos Grasos , Sphingomonas , Ácidos Grasos/química , Fosfolípidos/química , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , Espermidina/química
4.
Curr Microbiol ; 80(8): 264, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386175

RESUMEN

Two novel bacterial strains, designated as SM33T and NSE70-1T, were isolated from wet soil in South Korea. To get the taxonomic positions, the strains were characterized. The genomic information (both 16S rRNA gene and draft genome sequence analysis) show that both novel isolates (SM33T and NSE70-1T) belong to the genus Sphingomonas. SM33T share the highest 16s rRNA gene similarity (98.2%) with Sphingomonas sediminicola Dae20T. In addition, NSE70-1T show 96.4% 16s rRNA gene similarity with Sphingomonas flava THG-MM5T. The draft genome of strains SM33T and NSE70-1T consist of a circular chromosome of 3,033,485 and 2,778,408 base pairs with DNA G+C content of 63.9, and 62.5%, respectively. Strains SM33T and NSE70-1T possessed the ubiquinone Q-10 as the major quinone, and a fatty acid profile with C16:0, C18:1 2-OH, C16:1 ω7c/C16:1 ω6c (summed feature 3) and C18:1 ω7c/C18:1 ω6c (summed feature 8) as major fatty acids. The major polar lipids of SM33T and NSE70-1T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine, respectively. Moreover, genomic, physiological, and biochemical results allowed the phenotypic and genotypic differentiation of strains SM33T and NSE70-1T from their closest and other species of the genus Sphingomonas with validly published names. Therefore, the SM33T and NSE70-1T represent novel species of the genus Sphingomonas, for which the name Sphingomonas telluris sp. nov. (type strain SM33T = KACC 22222T = LMG 32193T), and Sphingomonas caseinilyticus (type strain NSE70-1T = KACC 22411T = LMG 32495T).


Asunto(s)
Sphingomonas , ARN Ribosómico 16S/genética , Sphingomonas/genética , Ácidos Grasos , Genómica , Genotipo
5.
Anal Biochem ; 653: 114787, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35709929

RESUMEN

Zinc (Zn) and, alternatively, nickel (Ni) substituted cobalt ferrite (CF) nanoparticles (NPs) were prepared by sol-gel method. X-ray diffraction analysis revealed the formation of cubic structure of cobalt ferrite. FTIR analysis confirmed the vibrational band located at 550-580 cm-1 that belongs to the M - O bond (M = Ni, and Zn). The alteration of the surface morphology of CF after the addition of Zn and Ni ions was observed from scanning electron microscopic images. The additional peaks in the energy dispersive X-ray diffraction (EDX) analysis spectra were found to correspond to Zn and Ni. The presence of Zn and, alternatively, Ni ions enhanced the biocidal properties of CF NPs against gram negative organisms, in a concentration and time-dependent manner. Furthermore, exposure to CF, CF-Zn and CF-Ni NPs decreased metabolic activity due to the damage of extra polymorphic substances, live/dead cell variation, architecture and surface integrity of the cells. Altogether, the present investigation provides the basis of metal ion substituted metal oxide NPs as anti-biofilm agents against gram-positive and gram-negative bacteria.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacología , Cobalto/química , Compuestos Férricos , Bacterias Gramnegativas , Bacterias Grampositivas , Nanopartículas del Metal/química , Nanopartículas/química , Níquel/química , Óxidos/química , Difracción de Rayos X , Zinc/química
6.
Environ Res ; 212(Pt B): 113310, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35472466

RESUMEN

This study looked at the development of effective biosorbents to recover the most toxic elements from industrial water. B. amyloliquefaciens was isolated from marine soils showing extreme resistance to Chromium (Cr(VI)) ions. During the 60 min of contact time, 79.90% Cr(VI) was adsorbed from the aqueous solution. The impact of important factors such as biomass concentration, pH of the medium, and initial metal ions concentration on biosorption rate was also examined. The desorption study indicated that 1 M HCl (91.24%) was superior to 0.5 M HCl (74.81%), 1 M NaOH (64.96%), and distilled water (3.66%). Based on the Langmuir model, the maximum adsorption capacity of the bio-absorbent was determined to be 48.44 mg/g. The absorption mechanism was identified as monolayer, and 1/n from the Freundlich model falls within 1, thus indicating favorable adsorption. Based on the findings of the present study, the soil bacterium B. amyloliquefaciens was found to be the best alternative and could be used to develop strategies for managing existing environmental pollution through biosorption.


Asunto(s)
Bacillus amyloliquefaciens , Contaminantes Químicos del Agua , Adsorción , Bacterias , Biomasa , Cromo/análisis , Concentración de Iones de Hidrógeno , Iones , Cinética , Suelo , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Res ; 204(Pt C): 112337, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34742711

RESUMEN

Recent years, heavy metal reduction of contaminated atmosphere using microbes is heightened worldwide. In this context, the current study was focused on heavy metal resistant actinomycete strains were screened from effluent mixed contaminated soil samples. Based on the phenotypic and molecular identification, the high metal resistant actinomycete strain was named as Nocardiopsis dassonvillei (MH900216). The highest bioflocculent and exopolysaccharide productions of Nocardiopsis dassonvillei (MH900216) was confirmed by various invitro experiments result. The heavy metal degrading substances was characterized and effectively confirmed by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscope (SEM). Further, the heavy metal sorption ability of actinomycete substances bioflocculent was exhibited 85.20%, 89.40%, 75.60%, and 51.40% against Cd, Cr, Pb and Hg respectively. Altogether, the bioflocculent produced actinomycete Nocardiopsis dassonvillei (MH900216) as an excellent biological source for heavy metal reduction in waste water, and it is an alternative method for effective removal of heavy metals towards sustainable environmental management.


Asunto(s)
Metales Pesados , Aguas Residuales , Adsorción , Metales Pesados/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales/química
8.
Environ Res ; 204(Pt A): 111914, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34437851

RESUMEN

In this work, graphene oxide-p-Phenylenediamine nanocomposites of two different ratios of Graphene oxide: p-Phenylenediamine (1:1 and 1:5) were prepared and characterized by using analytical, spectroscopic and microscopic studies (GO-pPD 11 and GO-pPD 15). These nanocomposites were employed as fluorescent chemosensors for sensing potential cations. Remarkably, graphene oxide-p-Phenylenediamine nanocomposites of ratio 1:1 (GO-pPD 15) was selective and sensitive to Ag+ ions, whereas the graphene oxide-p-Phenylenediamine nanocomposites of ratio 1:5 (GO-pPD 15) was selective to Ce3+ions. A possible mechanism as switch "off-on" is proposed built on the inhibition of the photo induced electron transfer process in both the fluorescent probes in detecting the metal ions. In addition, interference studies were performed with the help of competitive complexation analysis and no significant interference were found by other potentially competing cations. The pH studies revealed that both the chemosensors can be used at the physiological pH for the ion detection and also the detection time was within 2-3 min. Both the chemosensors show good reversibility and hence the sensors can be used for multiple times. The newer nanocomposites were then utilized in the real water sample analysis as to check its real level application purpose.


Asunto(s)
Grafito , Nanocompuestos , Iones , Fenilendiaminas
9.
Environ Res ; 200: 111708, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280417

RESUMEN

The removal of toxic heavy metal ions from contaminated environments is a great challenge and requires an alternative rapid, efficient, economical bioremediation approach. Henceforth, bioflocculant producing endophytic actinobacterial sp. was isolated from heavy metal contaminated marine environments for heavy metal biosorption process. After molecular characterization, the isolated actinomycete starin was Nocardiopsis sp. GRG 3 (KT235642). It was indicated that the maximum flocculating activity of 80.90% with glucose, and yield is 4.52 g L1. The optimum flocculating activity was reached at pH 7 in the presence of CaCl2 ions. Further, the bioflocculent produced Nocardiopsis sp. GRG 3 (KT235642) was characterized by fourier transform infrared analysis spectra (FTIR) and displayed the presence of carboxyl, hydroxyl, amino groups and characteristic of more polysaccharide and protein. The heavy metal sorption by bioflocculant Nocardiopsis sp. GRG 3 (KT235642) was effectively removed 55.90% Cd, 85.90% Cr, 74.7% Pb, and 51.90% Hg. Therefore, this study was proved that the bioflocculant derived from endophytic actinobacteria, Nocardiopsis sp. GRG 3 (KT235642) as a effective alternative method for decreasing the heavy metals towards sustainable environmental management.


Asunto(s)
Actinobacteria , Metales Pesados , Actinomyces , Biodegradación Ambiental , Floculación , Concentración de Iones de Hidrógeno
10.
Environ Res ; 199: 111322, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019895

RESUMEN

Heavy metal pollution in the water bodies causes a serious threat to all living beings. Extended exposure of heavy metals such as nickel (Ni) ions causes cancer. Henceforth, the current study investigated the removal of Ni ions from the electroplating effluent using nanocomposites namely, Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) in the presence of various factors such as contact time, pH, agitation speed and sorbent dosage. Further, it was determined the rate kinetic model and adsorption equilibrium isotherms. The study also focused on comparing the removal efficiency of two nanocomposites. The maximum sorption efficiency were found to be 90.8% and 84.4% at optimized pH (8), contact time (180-1440 m), RPM (250-300) and adsorbent dosage (0.2 mg/L) for GO and rGO respectively. Furthermore, toxicity of treated and untreated effluent were tested against Phosphobacter and Azospirillium using GO and rGO and found that the treated effluent was non-toxic. The contribution of this study to agriculture in using recycled effluent for crop cultivation was being verified by seed germination of Lablab purpureus seeds watered with treated and untreated effluent. Finally we concluded that the results of treated water can be used for cultivation as there was healthy growth of plants.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Adsorción , Galvanoplastia , Grafito , Iones , Cinética , Contaminantes Químicos del Agua/análisis
11.
Microb Pathog ; 126: 138-148, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316902

RESUMEN

The present study was designed to identify the potential bioactive compound from endophytic actinomycetes (EA) Nocardiopsis sp. GRG 2 (KT 235641) against selected extended spectrum beta lactamase (ESBL) producing Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae). Initially, the multi drug resistance (MDR) effect of selected uropathogens was confirmed by respective UTI panel of Hexa antibiotics disc methods. The zone of inhibition ≤22 mm for ceftazidime, ≤ 27 mm for cefotaxime and ≤8 mm zone of MIC stripe against both the uropathogens of phenotypic methods confirmed, the selected strains were ESBL producer. Among the various EA extracts, GRG 2 extract showed excellent antibacterial activity against both ESBL producing P. aeruginosa and K. pneumonia by agar well diffution method. The molecular identification of selected GRG 2 strain was named as Nocardiopsis sp. GRG 2 (KT235641). The antibacterial metabolites present in the TLC elution was exhibited at 274 nm by UV visible spectrometer. The partial purification of preparative HPLC fraction 3 showed 14, 16 mm against P. aeruginosa and K. pneumoniae, respectively. Based on the antibacterial effect, the FT-IR, GC-MS and LC-MS analysis of fraction 3 was confirmed as 1, 4-diaza-2, 5-dioxo-3-isobutyl bicyclo[4.3.0]nonane (DDIBN). Further, the dose dependent inhibition of DDIBN against both ESBL producing pathogens was observed at 75 µg/mL by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The increased cell death and disrupted cell membrane integrity were observed at MIC of DDIBN by confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM). The results were proved that the DDIBN has potential antibacterial metabolites against ESBL producing pathogens and it can be applied for various other biomedical fields.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antibacterianos/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nocardia/aislamiento & purificación , Nocardia/metabolismo , Genes Bacterianos/genética , Bacterias Gramnegativas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Nocardia/clasificación , Nocardia/genética , Filogenia , Pseudomonas aeruginosa/efectos de los fármacos , ARN Ribosómico 16S/genética , Infecciones Urinarias/microbiología
12.
Microb Pathog ; 127: 267-276, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30550842

RESUMEN

Copper oxide nanoparticles (CuO NPs) were synthesized biologically using leaf extract of Camilla japonica. The typical UV-visible spectral peak of CuO NPs was observed at a wavelength of ∼290 nm, which confirmed their successful synthesis. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the synthesized CuO NPs were found to possess spherical shape. Energy dispersive X-ray analyzer (EDX) results revealed that the CuO NPs are almost pure with atomic percentages of 50.92 for Cu and 49.08 for O. Fourier transform infrared (FTIR) confirmed the presence of an absorption peak located at a wavenumber position of ∼480 cm-1 typical for highly pure CuO NPs. TEM images displayed that the particles are relatively uniform in size ∼15-25 nm. The P. aeruginosa and K. pneumonia showed complete resistance against Hexa 077 antibiotic discs. The result of ≤22 ceftazidime and ≤27 cefotaxime confirmed that both the uropathogens were ESBL producers. The ≥8 mm of the MIC stripe further confirmed that both the uropathogens were ESBL producers. Furthermore, the antibacterial activity of CuO NPs against selected ESBL producing P. aeruginosa and K. pneumoniae at minimum inhibition concentration (MIC) of 100 µg/mL. The decreased cell viability and damaged membrane construction of both the uropathogens were observed by confocal laser scanning microscope (CLSM) using AO/EB stains at desired MIC dose. The morphological damage of the bacterial cells was demonstrated by SEM analysis. Hence, based on the above in vitro findings, the results suggested that the CuO NPs are efficient antibacterial compounds against ESBL producing bacteria, and that the plant leaf mediated CuO NPs can be considered as novel and promising material to act against various infectious bacteria.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Cobre/metabolismo , Cobre/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Pseudomonas aeruginosa/efectos de los fármacos , Camellia/química , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana , Klebsiella pneumoniae/enzimología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Pseudomonas aeruginosa/enzimología , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , beta-Lactamasas/metabolismo
13.
Bioorg Chem ; 89: 103008, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31151056

RESUMEN

The ability of a natural stabilizing and reducing agent on the synthesis of silver nanoparticles (Ag NPs) was explored using a rapid and single-pot biological reduction method using Nocardiopsis sp. GRG1 (KT235640) biomass. The UV-visible spectral analysis of Ag NPs was found to show a maximum absorption peak located at a wavelength position of ∼422 nm for initial conformation. The major peaks in the XRD pattern were found to be in excellent agreement with the standard values of metallic Ag NPs. No other peaks of impurity phases were observed. The morphology of Ag NPs was confirmed through TEM observation, demonstrating that the particle size distribution of Ag NPs entrenched in spherical particles is in a range between 20 and 50 nm. AFM analysis further supported the nanosized morphology of the synthesized Ag NPs and allowed quantifying the Ag NPs surface roughness. The synthesized Ag NPs showed significant antibacterial and antibiofilm activity against biofilm positive methicillin-resistant coagulase negative Staphylococci (MR-CoNS), which were isolated from urinary tract infection as determined by spectroscopic methods in the concentration range of 5-60 µg/ml. The inhibition of biofilm formation with coloring stain was morphologically imaged by confocal laser scanning microscopy (CLSM). Morphological alteration of treated bacteria was observed by SEM analysis. The results clearly indicate that these biologically synthesized Ag NPs could provide a safer alternative to conventional antibiofilm agents against uropathogen of MR-CoNS.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Resistencia a la Meticilina/efectos de los fármacos , Meticilina/farmacología , Plata/farmacología , Staphylococcus/efectos de los fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Antibacterianos/química , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Meticilina/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Plata/química , Plata/metabolismo , Relación Estructura-Actividad
14.
Microb Pathog ; 121: 123-130, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778819

RESUMEN

The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential.


Asunto(s)
Escherichia coli/genética , Genes Bacterianos , Proteus mirabilis/genética , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Ceftazidima/farmacología , Cefalosporinas/farmacología , Ciprofloxacina/farmacología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Proteus mirabilis/efectos de los fármacos , Infecciones Urinarias/diagnóstico , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
15.
Microb Pathog ; 118: 190-198, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524549

RESUMEN

Urinary tract infections (UTIs) are diverse public health complication and caused by range of pathogens, however mostly Gram negative bacteria cause significant life threatening risks to different populations. The prevalence rate and antimicrobial resistance among the Gram negative uropathogens alarmed significantly heighten the economic burden of these infections. In this study, we investigated the antibiofilm efficiency of Pyrrolo [1,2-a] pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl) extracted from endophytic actinomycetes Nocardiopsis sp. GRG 1 (KT235640) against P. mirabilis and E. coli. The extracted compound was characterized through TLC, HPLC, GC-MS, LC-MS and confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM). The compound, Pyrrolo [1,2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) inhibits both bacterial biofilm formation as well as reduces the viability of preformed biofilms. Furthermore, CLSM image shows cell shrinkage, disorganized cell membrane and loss of viability. The SEM result also confirms the cell wall degradation in treated cells of the bacteria. Hence, the Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) is active against P. mirabilis and E. coli.


Asunto(s)
Actinobacteria/química , Actinobacteria/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones Urinarias/microbiología , Antibacterianos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Chromobacterium/química , Chromobacterium/metabolismo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Proteus mirabilis/citología , Proteus mirabilis/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , beta-Lactamasas
16.
Microb Pathog ; 121: 224-231, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29807135

RESUMEN

The accelerative outgrowth of extended spectrum ß-lactamases (ESBLs) producing Escherichia coli (E. coli) and Proteus mirabilis (P. mirabilis) was mainly due to incessant relentless influence of antibiotics thereby increasing incidence and death rate which was obvious from the survey of ESBLs producing bacteria related health problem. In the present paper, we synthesized and characterized zinc oxide nanoparticles (ZnO NPs) employing using Camellia japonica leaf extract, bactericidal action of these NPs against extended spectrum ß lactamases (ESBLs) positive E. coli and P. mirabilis clinical strains owing the minimal inhibitory concentration (MIC) percentage 83, 81% at 100 µg/mL concentration and minimum bactericidal concentration (MBC) final inhibiting concentration at 150 µg/mL. Moreover, confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM) results evident for loss of viability, cell shrinkage, disarrangement of cell membrane, and cell wall lysis activity of ZnO NPs against ESBLs positive E. coli BDUMS3 (KY617770) and P. mirabilis BDUMS1 (KY617768) strains. From the results, it was observed that the biologically synthesized ZnO NPs has stronger antibacterial effect against ESBLs producing bacterial strains. Nevertheless, current date there is no reports of antibacterial activity of metal oxide (ZnO) NPs against ESBL producing gram negative bacteria. Consequently, this finding is the first report in this respect and it shows band gap energy and ROS accumulation to damage the cell wall and inhibit the growth of ESBL producing gram negative strains.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Nanopartículas/química , Óxido de Zinc/farmacología , beta-Lactamasas/metabolismo , Camellia/química , Pared Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Proteus mirabilis/efectos de los fármacos
17.
Microb Pathog ; 125: 325-335, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30243551

RESUMEN

The aim of the current study is to identify bioactive compound from marine endophytic actinomycetes (MEA) isolated from Gulf of Mannar region, Southeast coast of India. Among the isolated actinomycetes, strain GRG 4 exhibited excellent ability to inhibit isolated colistin resistant (CR) Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae), which is a emerging threat to the world. The strain was identified as Streptomyces coeruleorubidus GRG 4 (KY457708), based on morphological, biochemical, phenotypic and genotypic characters. The bioactive metabolites present in the methanolic extract were partially purified by TLC and preparative HPLC. The active HPLC fraction 2 showed 15, 20 mm zone of inhibition against both CR P. aeruginosa and K. pneumoniae respectively. Analytical HPLC and FT-IR results of fraction 2 showed with carbonyl group. Both GC-MS and LC-MS results confirmed that the fraction 2 contained chemical constituents of Bis (2-Ethylhexyl) Phthalate (BEP). The compromised structure with loosely integrated and ruptured cell wall of BEP treated CR bacteria were observed by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) at 75 µg/mL of minimum inhibitory concentration (MIC) dose. Further, cytotoxic effect of BEP against A549 human lung cancer cells revealed complete inhibition by cell proliferation and apoptosis was observed at 100 µg/mL in 24 h treatment. In addition, irreversible ROS dependent oxidative damage was clearly observed at the IC50 concentration of BEP. The toxicity of BEP was also studied against Vibrio fischeri (V. fischeri) and found to be highly toxic after 15 and 30 min of treatment. Based on the results it could be concluded that the identified compound BEP is a potent inhibitor for CR bacteria and A549 lung cancer cells.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Streptomyces/química , Células A549 , Aliivibrio fischeri/efectos de los fármacos , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Organismos Acuáticos/química , Productos Biológicos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Endófitos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , India , Concentración 50 Inhibidora , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/ultraestructura , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/ultraestructura , Streptomyces/aislamiento & purificación
18.
Chemosphere ; 308(Pt 1): 136270, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057355

RESUMEN

Recent years, metal pollution is an alarming factor to know about protects the environmental ecosystem due to the toxic, persistent and abundant in nature. Metals are present everywhere in the biotic and abiotic samples including soil, water, and microbes. The rate of bioaccumulation and biotransformation are very high. The excess concentration of the metals causes heavy metal pollution or contamination. Due to these defects, the removal of metals using biological sources is heightened in the current research. In this current investigation, the biosorption potential ability of the metal tolerable Bacillus cereus on Pb and Cu rich environment was chosen and thoroughly monitored. The 16s rRNA of the Bacillus cereus was sequenced, and named as Bacillus cereus RMN 1 (MK521259). The various test concentration (10-60 mg/mL) of Pb and Cu was exhibited the maximum removal percentages of 85.2% and 60.2%. The result of bisorption factors exhibited, 300 mg/mL of the biosorbent potency, 60 min contact time and pH 7, and they found to be optimal to remove the maximum of Pb ion from the solution. In the regression coefficients, the Freundlich and Langmuir isotherm models were used to study the adsorption kinetics of metal ions. In addition, the isotherm model confirmed that the of B. cereus biomass medicated metal adsorption was more favourable reaction for metal degradation. With the above evidences, the results of the present investigation proved that B. cereus derived biomass was actively adsorbing the metals ions. Thus we are recommending for the implementation of effective waste water treatment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Bacillus cereus/genética , Biomasa , Ecosistema , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Metales Pesados/análisis , ARN Ribosómico 16S , Suelo , Contaminantes Químicos del Agua/toxicidad
19.
Colloids Surf B Biointerfaces ; 202: 111690, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33721803

RESUMEN

In the present study, chitosan-containing nanocomposites were investigated as new antibacterial agents. Magnetite (Fe3O4) nanoparticles (NPs) as well as chitosan (CS)/Fe3O4 nanocomposites (NCs) and graphene(Gr)/CS/Fe3O4 NCs were synthesized by simple hydrothermal method. Their composition, structure and morphology were studied, followed by the evaluation of their antibacterial activity against ESBL-producing and gram-negative P. aeruginosa and K. pneumoniae bacterial strains. The Gr/CS/Fe3O4 NCs showed significantly higher antibacterial activity compared to Fe3O4 NPs and CS/Fe3O4 NCs (105 and 69 % higher against P. aeruginosa as well as 91 and 77 % higher against K. pneumoniae, respectively). The minimum inhibitory concentration (MIC) of Gr/CS/Fe3O4 NCs against P. aeruginosa and K. pneumoniae were 60 and 70 µg/mL, respectively. The synergistic antibacterial activity and facile synthesis of Gr/CS/Fe3O4 NCs suggests their applicability as novel highly efficient antibacterial agents with potential for a wide range of biomedical applications, where antibacterial properties are needed.


Asunto(s)
Quitosano , Grafito , Nanocompuestos , Antibacterianos/farmacología , Óxido Ferrosoférrico , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
20.
J Infect Public Health ; 14(12): 1911-1916, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34785167

RESUMEN

BACKGROUND: Recent years, the treatment of multi-drug resistant bacteria and their effect are very difficult due to the virulence factors modification. Based on the world wide thread, we have tried to identify the ESBLs producing bacteria from urinary tract infection patients. In result, the highly antibiotic resistant effect of Pseudomonas aeruginosa and Klebsiella pneumoniae were identified. METHODS: Initially, Hexa disc diffusion method was performed to detect the multi-drug resistant bacteria using respective antibiotics of HX066, HX033 and HX077, HX012 discs. Consecutively, the ESBL producing ability of confirmed multi drug resistant bacteria was performed to detect their ESBL producing ability using specific extended spectrum beta lactamase (ESBLs) detection discs of Hexa G-minus 24. Furthermore, the ESBL producing ability of the bacteria was confirmed by ESBLs detection Ezy MIC™ E-test stripe method. RESULTS AND CONCLUSIONS: In result, 10, 5 and 4 mm and 10, 14 and 8 mm zone of inhibition against imipenem (IPM), Ticarcillin/Clavulanic acid (TCC), Cefoperazone (CPZ) and Ampicillin (AMP), Norfloxacin (NX), Nalidixic acid (NA) antibiotics for P. aeruginosa and 16, 22 and 10, 18 mm zone of inhibition against ceftazidime (CAZ), methicillin (MET), ampicillin amoxyclav (AMC), co-trimoxazole (COT) of the HX077 HX012 for K. pneumoniae were observed. Based on the Clinical & Laboratory Standards Institute (CLSI) guidelines, both the bacteria were more resistant to tested antibiotics and it could be developed more resistant against all the tested antibiotics. In addition, the phenotypic detection of ESBL production effect was also performed against both the selected uropathogens, and the results were shown ≥22 mm, ≥27 zone of inhibition against all the tested antibiotics. Further, the genetic identification of multi plux PCR result was shown TEM, SHV and CTX-m genes were present in both the selected uropathogens. Finally, our results were correlated each other and concluded that the selected uropathogens were multi drug resistant effect and also ESBLs producer.


Asunto(s)
Infecciones Urinarias , beta-Lactamasas , Antibacterianos/farmacología , Bacterias/genética , Humanos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA