Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Amino Acids ; 56(1): 5, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300332

RESUMEN

Four linear amino acids of increased separation of the carboxyl and amino groups, namely glycine (aminoacetic acid), ß-alanine (3-aminopropanoic acid), GABA (4-aminobutanoic acid) and DAVA (5-aminopentanoic acid), have been studied by quantum chemical ab initio and DFT methods including the solvent effect in order to get electronic structure and molecular descriptors, such as ionisation energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment and dipole polarizability. Thermodynamic functions (zero-point energy, inner energy, enthalpy, entropy, and the Gibbs energy) were evaluated after the complete vibrational analysis at the true energy minimum provided by the full geometry optimization. Reaction Gibbs energy allows evaluating the absolute redox potentials on reduction and/or oxidation. The non-local non-additive molecular descriptors were compared along the series showing which of them behave as extensive, varying in match with the molar mass and/or separation of the carboxyl and amino groups. Amino acidic forms and zwitterionic forms of the substances were studied in parallel in order to compare their relative stability and redox properties. In total, 24 species were investigated by B3LYP/def2-TZVPD method (M1) including neutral molecules, molecular cations and molecular anions. For comparison, MP2/def2-TZVPD method (M2) with full geometry optimization and vibrational analysis in water has been applied for 12 species; analogously, for 24 substances, DLPNO-CCSD(T)/aug-cc-pVTZ method (M3) has been applied in the geometry obtained by MP2 and/or B3LYP. It was found that the absolute oxidation potential correlates with the adiabatic ionisation energy; the absolute reduction potential correlates with the adiabatic electron affinity and the electrophilicity index. In order to validate the used methodology with experimental vertical ionisation energies and vibrational spectrum obtained in gas phase, calculations were done also in vacuo.


Asunto(s)
Aminoácidos , Agua , Ácido gamma-Aminobutírico , Glicina , beta-Alanina
2.
Inorg Chem ; 63(2): 1068-1082, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38166196

RESUMEN

To get a better insight into understanding the factors affecting the enhancement of the magnetic anisotropy in single molecule (single ion) magnets, two cobalt(II) complexes based on a tridentate ligand 2,6-di(thiazol-2-yl)pyridine substituted at the 4-position with N-methyl-pyrrol-2-yl have been synthesized and studied by X-ray crystallography, AC and DC magnetic data, FIRMS and HFEPR spectra, and theoretical calculations. The change of the counteranion in starting Co(II) salts results in the formation of pentacoordinated mononuclear [Co(mpyr-dtpy)Cl2]·2MeCN (1) complex and binuclear [Co(mpyr-dtpy)2][Co(NCS)4] (2) compound. The observed marked distortion of trigonal bipyramid geometry in 1 and cationic octahedral and anionic tetrahedral units in 2 brings up a question about the validity of the spin-Hamiltonian formalism and the possibility of determining the value and sign of the zero-field splitting D parameter. Both complexes exhibit field-induced slow magnetic relaxation with two or three relaxation channels at BDC = 0.3 T. The high-frequency relaxation time in the reciprocal form τ(HF)-1 = CTn develops according to the Raman relaxation mechanism (for 2, n = 8.8) and the phonon-bottleneck-like mechanism (for 1, n = 2.3). The high-frequency relaxation time at T = 2.0 K and BDC = 0.30 T is τ(HF) = 96 and 47 µs for 1 and 2, respectively.

3.
J Phys Chem A ; 127(31): 6412-6424, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37494700

RESUMEN

A number of hexacoordinate, pentacoordinate, and tetracoordinate Ni(II) complexes have been investigated by applying ab initio CASSCF + NEVPT2 + SOC calculations and Generalized Crystal Field Theory. The geometry of the coordination polyhedron covers D4h, D3h, D2h, D2d, C4v, C3v, and C2v symmetry. The calculated spin-Hamiltonian parameters D and E were compared to the available experimental data. The limiting values of the D-parameter in the class of Ni(II) complexes are identified. Magnetic anisotropy in Ni(II) complexes, expressed by the axial zero-field splitting parameter D, seriously depends upon the ground and first excited electronic states. In hexacoordinate complexes, the ground electronic term is nondegenerate 3B1g for the D4h symmetry; D is slightly positive or negative. In tetracoordinate systems, D is only positive when the electronic ground state is nondegenerate 3A or 3B; this diverges on the τ4 path when oblate bisphenoid approaches the prolate geometry and a level crossing with 3E occurs. In pentacoordinate systems, D could be extremely negative when approaching a trigonal bipyramid (Addison index τ5 ∼ 1, ground state 3E″). In pentacoordinate Ni(II) complexes with the D3h and C3v symmetry of the coordination polyhedron, the ground electronic term is orbitally doubly degenerate which causes the D-parameter stays undefined. It is emphasized that one has to inspect compositions of the spin-orbit multiplets from the spin states |MS⟩ and check whether the weights confirm the expected spin-Hamiltonian picture: with D > 0, the ground state contains a dominant part of |0⟩ (close to 100%) whereas with D < 0 the spin-orbit doublet is formed of |±1⟩ with high weights (approaching 50 + 50%). The calculations show that the situations are not black and white, and the mixing of the states might be more complex especially when the rhombic zero-field splitting parameter E is in the play. In the case of the 3E ground term, six spin-orbit multiplets are formed by mixing six |MS⟩ states from the ground and quasi-degenerate excited states.

4.
J Phys Chem A ; 127(14): 3256-3264, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36996307

RESUMEN

The majority of experimental data in electron spin resonance and molecular magnetism are interpreted in terms of the spin-Hamiltonian (SH) formalism. However, this is an approximate theory that requires a proper testing. In the older variant, the multielectron terms are used as a basis in which the D-tensor components are evaluated by employing the second-order perturbation theory (PT) for nondegenerate states; here, the spin-orbit interaction expressed via the spin-orbit splitting parameter λ serves for the perturbation. The model space is restricted only to the fictitious spin functions |S, M⟩. In the case of the orbital (quasi) degeneracy of the ground term, the PT tends to diverge and the subtracted D, E, and g parameters are false. In the second variant working in the "complete active space" (CAS), the spin-orbit coupling operator is involved by the variation method resulting in the spin-orbit multiplets (energies and eigenvectors) The multiplets can be evaluated either by applying ab initio CASSCF + NEVPT2 + SOC calculations or by using semiempirical generalized crystal-field theory (with the one-electron SOC operator depending upon ξ). The resulting states can be projected onto the subspace of the spin-only kets in the way that the eigenvalues stay invariant. Such an effective Hamiltonian matrix can be reconstructed using six independent components of the symmetric D-tensor from which the D and E values are obtained by solving linear equations. The eigenvectors of the spin-orbit multiplets in the CAS allow determining the dominating composition of the spin projection─cumulative weights of |±M⟩. These are conceptually different from those generated by the SH alone. It is shown that in some cases, the SH theory works satisfactorily for a series of transition-metal complexes; however, sometimes it fails. The ab initio calculations on the SH parameters are compared with the approximate generalized crystal-field theory conducted at the experimental geometry of the chromophore. In total, 12 metal complexes have been analyzed. One of the criteria that assesses the validity of SH is the projection norm N for spin multiplets (this has not to be far from 1). Another criterion is the gap in the spectrum of the spin-orbit multiplets that separates the hypothetical (fictitious) spin-only manifold from the rest of the states.

5.
Inorg Chem ; 61(44): 17848-17854, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36287226

RESUMEN

Shapeness of the coordination polyhedra is quantified by a procedure that moves arbitrary Cartesian coordinates of the complex to the origin, rotates them, reorders them, and compares with the predefined model complex of exact symmetry by calculating the square Euclidian distance and/or R-factor as agreement factors. The generalized crystal-field theory has been enriched by considering a non-perfect match of the characters of the irreducible representations borne by the eigenvectors representing the crystal-field terms with those assigned to a perfect symmetry. The agreement of quasi-symmetry with the perfect one is quantified by an array of square Euclidian distances and/or R-factors. This procedure allows assignment of electronic d-d transitions in the case of non-perfect (quasi) symmetry.

6.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670480

RESUMEN

One-pot reaction of the Schiff base N,N'-ethylene bis(salicylaldimine) (H2L), CoCl2.6H2O, and [Ph2SnCl2] in acetone produces the mixed valence CoIICoIII2 compound [CoIICoIII2(µ-L)2(Ph)2(µ-Cl)2]·(CH3)2CO·H2O (1). Our recent study already revealed that the same reaction mixtures in methanol or ethanol produced a heterometallic SnIVCoIII (2) or monometallic CoIII complex (3), respectively. Comparison of these organometallic systems shows that the 2,1-intermetallic Ph shift occurs in any of those solvents, but their relevant structural features (mononuclear, dinuclear-heterometallic, and trinuclear mixed valence) are solvent dependent. Geometrical structural rotation is also discussed among the related organometallic CoIICoIII2 systems. The AC magnetic susceptibility measurements indicate that 1 is a single molecule magnet (SMM), exhibiting a field-induced slow magnetic relaxation with two modes. The relaxation time for the low-frequency channel is as slow as τ~0.6 s at T = 2.0 K and BDC = 1.0 T.


Asunto(s)
Cobalto/química , Imanes/química , Solventes/química , Cristalografía por Rayos X , Electricidad , Campos Magnéticos , Conformación Molecular , Rotación , Temperatura
7.
Inorg Chem ; 59(20): 14871-14878, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32998511

RESUMEN

Pentacoordinate Fe(III) complexes [Fe(LMeO)2X] and [Fe(LEtO)2X], X = Cl and Br, show the slow magnetic relaxation that is enhanced by the applied static magnetic field. A substitution of the distant ethoxy group to the methoxy group residing at the phenyl ring of a Schiff base N,O-donor ligand (LMeO vs LEtO) considerably influences the relaxation characteristics. In the chlorido complex [Fe(LMeO)2Cl], the following three slow relaxation channels are recognized as possessing different relaxation times: τLF = 0.47 s, τIF = 13 ms, and τHF = 26 µs at the static field BDC = 0.2 T and T = 1.9 K. In the bromido complex [Fe(LMeO)2Br], only the following two relaxation channels are seen: τLF = 0.30 ms and τHF = 139 µs at BDC = 0.15 T and T = 1.9 K. Due to D > 0, the Orbach relaxation mechanism does not apply, and the temperature dependence of the high-frequency relaxation time can be described by two Raman-like terms.

8.
Inorg Chem ; 57(22): 14314-14321, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30406658

RESUMEN

Instead of assembling complex clusters and/or expensive lanthanide-based systems as single ion magnets, we are focusing on mononuclear cobalt(II) systems among which the complex under study, [Co( pydca)( dmpy)]2·H2O (1), shows a field supported slow magnetic relaxation on the order of seconds at low temperature ( pydca = pyridine-2,6-dicarboxylato, dmpy = 2,6-dimethanolpyridine). The low-frequency relaxation time is as slow as τ(LF) = 1.35(6) s at T = 1.9 K and BDC = 0.4 T. The properties of 1 are compared to the previously reported nickel and copper analogues which were the first examples of single ion magnets in the family of Ni(II) and Cu(II) complexes.

9.
Inorg Chem ; 57(8): 4352-4358, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29600851

RESUMEN

Three compounds with octahedral-tetrahedral Co(II) moieties of [Co( dppm O, O)3][CoX4] type, where X = SCN (1), Cl (2), or I (4) have been synthesized and characterized by the X-ray structure analysis (1 and 4), and spectroscopic methods. The dc magnetic measurements show high magnetic anisotropy for octahedral centers whereas tetrahedral sites possess moderate D values. These results are confirmed by the ab initio calculations. The ac susceptibility data reveals a slow magnetic relaxation for 2 and 4, similar to that of the X = Br analogue (3), whereas 1 displays no ac-absorption signal. There are two relaxation channels; the slower for 2 (4) possesses a relaxation time as long as τLF= 178 (588) ms at T = 1.9 K and Bdc = 0.7 T. Also, the half-Zn analogue, [Co( dppm O, O)3][ZnI4], shows slow magnetic relaxation with two relaxation channels conditioned by the cationic unit [Co( dppm O, O)3]2+.

10.
Inorg Chem ; 57(20): 12740-12755, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30277381

RESUMEN

Three pentacoordinate complexes of the type [Co( pypz)X2], where pypz is a tridentate ligand 2,6-bis(pyrazol-1-yl)pyridine and X = Cl- (1), NCS- (2), and NCO- (3), have been synthesized, and their structures have been determined by X-ray analysis. The DC magnetic data show a sizable magnetic anisotropy, which was confirmed by high-field high-frequency electron paramagnetic resonance (HF EPR) measurements. Well-resolved HF EPR spectra of high spin cobalt (II) were observed over the microwave frequency range 100-650 GHz. The experimental spectra of both complexes were simulated with axial g tensor components, a very large positive D value, and different E/ D ratios. To determine the exact D value for 2 (38.4 cm-1) and 3 (40.92 cm-1), the far-infrared magnetic spectroscopy method was used. Knowledge of the zero field splitting parameters and their signs is crucial in interpreting the single-molecule magnet or single chain magnet behavior. The AC susceptibility data confirm that these complexes exhibit a slow magnetic relaxation under small applied DC field with two (1 and 3) or three (2) relaxation modes.

11.
Chemistry ; 23(33): 7990-7996, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28326629

RESUMEN

An unprecedented reversible dynamic transformation is reported in a metal-organic framework involving bond formation, which is accompanied by two important structural changes; achiral to chiral and two- to three-dimensions. Using two bent organic ligands (diimpym=4,6-di(1H-imidazol-1-yl)pyrimidine; H2 npta=5-nitroisophthalic acid) and CoII (NO3 )2 ⋅6 H2 O the coordination polymer Co(diimpym)(npta)⋅CH3 OH, (1⋅CH3 OH), was obtained solvothermally. Its structure consists of knitted pairs of square layers (44 -sql net) of five-coordinated Co and disordered methanol, and it crystallized in the achiral Pbca space group at room temperature. It undergoes a single crystal to single crystal (SC-SC) transformation to a 3D interpenetrated framework (α-polonium-type net, pcu) of six-coordinated Co and ordered methanol in the chiral P21 21 21 space group below 220 K. Most unusual is the dynamic temperature-dependent shortening of a Co⋅⋅⋅O connection from a non-bonded 2.640 Š(298 K) to a bonded 2.347 Šdistance (100 K) transforming the square pyramidal cobalt polyhedron to a distorted octahedron. The desolvated crystals (1) obtained at 480 K retain the full crystallinity and crystallize in the achiral Pbca space group between 100 and 298 K but the dynamic shortening of the Co⋅⋅⋅O distance connecting the layers into the 3D pcu framework structure is observed. Following post-synthetic insertion of ethanol (1⋅CH3 CH2 OH) it does not exhibit the transformation and retains the knitted 2D achiral Pbca structure for all temperatures (100-298 K) and the ethanol is always disordered. The structural analyses thus conclude that the ordering of the methanol induces the chirality while the available space controls the dynamic motion of the knitted 2D networks into the 3D interpenetrated framework. Consequently, 1 selectively adsorbs CO2 to N2 and exhibits Type-III isotherms indicating dynamic motion of the 2D networks to accommodate the CO2 at 273 and 298 K in contrast to the rigidity of the 3D framework at 77 K preventing N2 from penetrating the solid. The magnetic properties are also reported.

12.
Inorg Chem ; 56(3): 1478-1482, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28068067

RESUMEN

A mononuclear hexacoordinate Cu(II) complex shows a field induced slow magnetic relaxation that is not facilitated by an energy barrier to spin reversal due to the zero-field splitting. Two relaxation channels were found: the magnetic field strongly supports the low-frequency relaxation path with a relaxation time as long as τ = 0.8 s at T = 1.9 K and B = 1.5 T. The mechanism of the relaxation at low temperature involves the dominant Raman process for this S = 1/2 spin system along with a temperature-independent term belonging to a quantum tunneling.

13.
Inorg Chem ; 53(16): 8200-2, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25084067

RESUMEN

Pentacoordinate complex [CoL(3)Cl2] with a tridentate antenna-like ligand L(3) forms a dimer held by short π-π stacking with head-to-head contacts at 3.4 Å. The direct-current (dc) magnetic susceptibility and magnetization data confirm weak ferromagnetic interaction and a large-magnetic anisotropy, D/hc = 150 cm(-1) and E/hc = 11.6 cm(-1). The system shows superparamagnetic behavior at low temperature that depends upon the applied magnetic field. At Bdc = 0.2 T, a low-frequency peak at the out-of-phase susceptibility is seen (ν ∼ 0.3 Hz), whereas the onset of the second peak appears at ν > 1500 Hz, indicating the existence of two slow relaxation processes.

14.
Dalton Trans ; 53(11): 5147-5151, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38380676

RESUMEN

The structure and magnetic properties of a complex containing a {Dy2Cu5} core are presented. In 1, the Dy(III) are 9- and the Cu(II) are 4-, 5- and 6-coordinated. Antiferromagnetic interactions cause an irregular energy spectrum with the ground state J = 25/2. The complex is a single molecule magnet exhibiting slow magnetic relaxation in zero magnetic field.

15.
Dalton Trans ; 53(4): 1492-1496, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38131466

RESUMEN

A dinuclear complex [(H2O)Zn(LH)Eu(NO3)3] containing a hexadentate Schiff-base {N2O4}-donor ligand LH2- was prepared and characterized by X-ray structural analysis and IR, electronic and fluorescence spectroscopy. DC magnetic data show that upon heating the diamagnetic complex with the ground state Eu(III)-7F0 and Zn(II)-1S switches to paramagnetic species due to the population of 7FJ (J = 1 to 6) magnetic multiplets. The magnetic susceptibility increases from zero, passes through a maximum, and then decreases upon heating. This behaviour can be explained using a spin-orbit Hamiltonian with an axial distortion term. There is an alternative interpretation of the susceptibility data based on a two-level model similar to that used in the spin crossover theory.

16.
Dalton Trans ; 53(26): 10824-10828, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38887079

RESUMEN

AC susceptibility measurements of [FeIII(L5)(NCSe)] reveal a field supported slow magnetic relaxation. On cooling, the relaxation time of the high-frequency fraction decreases which is a sign of reciprocating thermal behaviour. The relaxation time for the low-frequency mode at T = 2.0 K is as high as τ(LF) = 2.0 s.

17.
J Mol Model ; 29(12): 370, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953387

RESUMEN

CONTEXT: Nitisinone is a medium-sized organic molecule that is used in treating hereditary tyrosinemia type 1 (HT-1). The structurally analogous mesotrione, however, is used as a pesticide/herbicide. What molecular properties are responsible for the similarity/dissimilarity of these molecules is investigated here. The solvent effect reduces the electron affinity to rather negative values and causes the negative electron affinity which manifests itself in a very high positive absolute reduction potential. METHODS: B3LYP method was utilized for a geometry optimization of nitisinone and mesotrione in their neural and ionized (L0, L+, L-) forms of 6 structures. The calculations were conducted in water as a solvent using conductor-like polarizable continuum model (CPCM), nitisinone also in vacuo. The complete vibrational analysis at the true energy minimum allows evaluating the thermodynamic functions with focus to the zero-point energy and overall entropic term. The change of the Gibbs energy on reductions and/or oxidation facilitates evaluating the absolute reduction and absolute oxidation potentials. Also, DLPNO-CCSD(T) method that involves the major part of the correlation energy has been applied to nitisinone and mesotrione and their molecular ions.

18.
Chem Commun (Camb) ; 59(18): 2612-2615, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36757181

RESUMEN

Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.

19.
Dalton Trans ; 52(23): 7885-7892, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212455

RESUMEN

Two hexacoordinate Co(II) complexes [Co(hfac)2(etpy)2] (1) and [Co(hfac)2(bzpyCl)2] (2) were synthesized and spectrally and structurally characterized. The {CoO4N2} chromophore adopts a geometry of the elongated tetragonal bipyramid with a small o-rhombic component. This less common arrangement causes the magnetic data to need be analysed using the Griffith-Figgis model, instead of the commonly used spin-Hamiltonian with zero-field splitting parameters D and E. In the case of the elongated bipyramid for d7 complexes, the source of the magnetic anisotropy of an easy-axis type is the axial crystal field splitting Δax. The ab initio CASSCF calculations followed by the NEVPT2 module confirm that the ground electronic term is quasi-degenerate owing to the splitting of the 4Eg (D4h) mother term. The lowest spin-orbit multiplets appear as four Kramers doublets belonging to the Γ5 irreducible representation of the double point group D2'. They exhibit a serious mixing of the |±1/2〉 and |±3/2〉 spins which reflects a sizable effect of the spin-orbit coupling. Both complexes exhibit field-supported slow magnetic relaxation governed by the Raman process.

20.
Dalton Trans ; 51(14): 5612-5616, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35315860

RESUMEN

A hexacoordinate Cu(II) complex with the {CuO4O'N} donor set shows an intermolecular π-π stacking owing to which a 1D-chain structure is formed. The DC magnetic data at low temperature are consistent with the Curie law. The AC susceptibility shows a field supported slow magnetic relaxation that survives up to 7 K. The relaxation time at T = 2.0 K and BDC = 0.2 T is τ = 0.23 ms and it increases at BDC = 0.6 T to τ = 2.9 ms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA