Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(5): 148, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578547

RESUMEN

A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.


Asunto(s)
Óxido de Zinc , Estrés Salino , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/farmacología , Antioxidantes/metabolismo , Salinidad
2.
Environ Geochem Health ; 45(12): 9435-9449, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36070110

RESUMEN

Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar's application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.


Asunto(s)
Nanoestructuras , Contaminantes del Suelo , Humanos , Suelo/química , Contaminantes del Suelo/análisis , Carbón Orgánico/química
3.
Environ Geochem Health ; 44(4): 1355-1376, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34241721

RESUMEN

Amelioration and remediation technology was developed for phosphogypsum utilization in Haplic Chernozem of South-European facies (Rostov Region). The technology comprises phosphogypsum dispersed application into the soil layer of 20-45 cm during intra-soil milling. In the model experiment, the phosphogypsum doses 0 (control), 10, 20, and 40 t ha-1 were studied. The Cd thermodynamic forms in soil solution were calculated via the developed mathematical chemical-thermodynamic model and program ION-3. The form of ion in soil solution (or water extract) was considered accounting the calcium-carbonate equilibrium (CCE) and association of ion pairs CaCO30; CaSO40, MgCO30, MgSO40, CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. For calculation of the equilibrium of microelements concentration in soil solution ion including heavy metals (HMs), the coefficient of microelement association kas was proposed. According to calculations, Cd2+ ion in soil solution was mostly bounded to associates CdOH+, partly to associates CdCO30 and CdHCO3+. The calculated kas of Cd was 1.24 units in the control option of experiment and decreased to 0.95 units at phosphogypsum dose 40 t ha-1. The ratio of "active [Cd2+] to total Cd" reduced from 33.5% in control option to 28.0% in the option of phosphogypsum dose 40 t ha-1. The biogeochemical barrier for penetration of HMs from soil to plant roots was high after application of phosphogypsum. According to calculation by ION-3, the standard soil environmental limitations overestimate the toxicity of Cd in soil solution. New decision for intra-soil milling and simultaneous application of phosphogypsum was developed to provide the environmentally safe waste recycling.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Plantas , Reciclaje , Suelo , Contaminantes del Suelo/análisis
4.
Stress Biol ; 4(1): 27, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777953

RESUMEN

Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.

5.
Sci Total Environ ; 916: 170064, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242481

RESUMEN

The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.


Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas , Nanoestructuras , Plásticos , Carbón Orgánico
6.
Sci Rep ; 13(1): 8574, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237060

RESUMEN

A major environmental problem on a global scale is the contamination of water by dyes, particularly from industrial effluents. Consequently, wastewater treatment from various industrial wastes is crucial to restoring environmental quality. Dye is an important class of organic pollutants that are considered harmful to both people and aquatic habitats. The textile industry has become more interested in agricultural-based adsorbents, particularly in adsorption. The biosorption of Methylene blue (MB) dye from aqueous solutions by the wheat straw (T. aestivum) biomass was evaluated in this study. The biosorption process parameters were optimized using the response surface methodology (RSM) approach with a face-centred central composite design (FCCCD). Using a 10 mg/L concentration MB dye, 1.5 mg of biomass, an initial pH of 6, and a contact time of 60 min at 25 °C, the maximum MB dye removal percentages (96%) were obtained. Artificial neural network (ANN) modelling techniques are also employed to stimulate and validate the process, and their efficacy and ability to predict the reaction (removal efficiency) were assessed. The existence of functional groups, which are important binding sites involved in the process of MB biosorption, was demonstrated using Fourier Transform Infrared Spectroscopy (FTIR) spectra. Moreover, a scan electron microscope (SEM) revealed that fresh, shiny particles had been absorbed on the surface of the T. aestivum following the biosorption procedure. The bio-removal of MB from wastewater effluents has been demonstrated to be possible using T. aestivum biomass as a biosorbent. It is also a promising biosorbent that is economical, environmentally friendly, biodegradable, and cost-effective.


Asunto(s)
Triticum , Contaminantes Químicos del Agua , Humanos , Biomasa , Termodinámica , Azul de Metileno/química , Concentración de Iones de Hidrógeno , Colorantes , Contaminantes Químicos del Agua/análisis , Cinética , Adsorción
7.
Plants (Basel) ; 10(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203538

RESUMEN

Despite the documented significance of carbon-based nanomaterials (CNMs) in plant development, the knowledge of the impact of carbon nanoparticles (CNPs) dosage on physiological responses of crop plants is still scarce. Hence, the present study investigates the concentration-dependent impact of CNPs on the morphology and physiology of Vigna radiata. Crop seedlings were subjected to CNPs at varying concentrations (25 to 200 µM) in hydroponic medium for 96 h to evaluate various physiological parameters. CNPs at an intermediate concentration (100 to 150 µM) favor the growth of crops by increasing the total chlorophyll content (1.9-fold), protein content (1.14-fold) and plant biomass (fresh weight: 1.2-fold, dry weight: 1.14-fold). The highest activity of antioxidants (SOD, GOPX, APX and proline) was also recorded at these concentrations, which indicates a decline in ROS level at 100 µM. At the highest CNPs treatment (200 µM), aggregation of CNPs was observed more on the root surface and accumulated in higher concentrations in the plant tissues, which limits the absorption and translocation of nutrients to plants, and hence, at these concentrations, the oxidative damage imposed by CNPs is evaded with the rise in activity of antioxidants. These findings show the importance of CNPs as nano-fertilizers that not only improve plant growth by their slow and controlled release of nutrients, but also enhance the stress-tolerant and phytoremediation efficiency of plants in the polluted environment due to their enormous absorption potential.

8.
Plants (Basel) ; 10(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34961197

RESUMEN

Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA