Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(3): e3002061, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972294

RESUMEN

We can use photosynthesis to capture carbon and make industries greener. Algae-driven carbon capture and manufacturing offer the potential for reducing CO2 emissions while also producing commodities such as bioplastics.


Asunto(s)
Dióxido de Carbono , Planetas , Industrias , Comercio , Carbono
2.
Theor Popul Biol ; 156: 117-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423480

RESUMEN

The infinitesimal model of quantitative genetics relies on the Central Limit Theorem to stipulate that under additive models of quantitative traits determined by many loci having similar effect size, the difference between an offspring's genetic trait component and the average of their two parents' genetic trait components is Normally distributed and independent of the parents' values. Here, we investigate how the assumption of similar effect sizes affects the model: if, alternatively, the tail of the effect size distribution is polynomial with exponent α<2, then a different Central Limit Theorem implies that sums of effects should be well-approximated by a "stable distribution", for which single large effects are often still important. Empirically, we first find tail exponents between 1 and 2 in effect sizes estimated by genome-wide association studies of many human disease-related traits. We then show that the independence of offspring trait deviations from parental averages in many cases implies the Gaussian aspect of the infinitesimal model, suggesting that non-Gaussian models of trait evolution must explicitly track the underlying genetics, at least for loci of large effect. We also characterize possible limiting trait distributions of the infinitesimal model with infinitely divisible noise distributions, and compare our results to simulations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Humanos , Distribución Normal , Fenotipo
3.
J Virol ; 96(20): e0078322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190242

RESUMEN

Unicellular microalgae are of immense ecological importance with growing commercial potential in industries such as renewable energy, food, and pharmacology. Viral infections can have a profound impact on the growth and evolution of their hosts. However, very little is known of the diversity within, and the effect of, unicellular microalgal RNA viruses. In addition, identifying RNA viruses in these organisms that could have originated more than a billion years ago constitutes a robust data set to dissect molecular events and address fundamental questions in virus evolution. We assessed the diversity of RNA viruses in eight microalgal cultures, including representatives from the diatom, eustigmatophyte, dinoflagellate, red algae, and euglenid groups. Using metatranscriptomic sequencing combined with bioinformatic approaches optimized to detect highly divergent RNA viruses, we identified 10 RNA virus sequences, with nine constituting new viral species. Most of the newly identified RNA viruses belonged to the double-stranded Totiviridae, Endornaviridae, and Partitiviridae, greatly expanding the reported host range for these families. Two new species belonging to the single-stranded RNA viral clade Marnaviridae, commonly associated with microalgal hosts, were also identified. This study highlights that a substantial diversity of RNA viruses likely exists undetected within the unicellular microalgae. It also highlights the necessity for RNA viral characterization and for investigation of the effects of viral infections on microalgal physiology, biology, and growth, considering their environmental and industrial roles. IMPORTANCE Our knowledge of the diversity of RNA viruses infecting microbial algae-the microalgae-is minimal. However, describing the RNA viruses infecting these organisms is of primary importance at both the ecological and economic scales because of the fundamental roles these organisms play in aquatic environments and their growing value across a range of industrial fields. Using metatranscriptomic sequencing, we aimed to reveal the RNA viruses present in cultures of eight microalgae species belonging to the diatom, dinoflagellate, eustigmatophyte, rhodophyte, and euglena major clades of algae. Accordingly, we identified 10 new divergent RNA virus species belonging to RNA virus families as diverse as the double-stranded Totiviridae, Endornaviridae, and Partitiviridae and the single-stranded Marnaviridae. By expanding the known diversity of RNA viruses infecting unicellular eukaryotes, this study contributes to a better understanding of the early evolution of the virosphere and will inform the use of microalgae in industrial applications.


Asunto(s)
Diatomeas , Dinoflagelados , Microalgas , Virus ARN , Diatomeas/genética , Dinoflagelados/genética , Microalgas/genética , Filogenia , Virus ARN/genética , Plantas , ARN , Genoma Viral
4.
Photosynth Res ; 155(2): 191-202, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417105

RESUMEN

Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris. Using a recently developed Phenoplate technique to map quantum yield of Photosystem II (Y(II)) and non-photochemical quenching (NPQ) as a function of temperature, we show that the fast-relaxing NPQ follows an inverse normal distribution with respect to temperature and appears insensitive to previous temperature acclimation. The slow-relaxing or residual NPQ after 5 minutes of dark recovery follows a normal distribution similar to Y(II) but with a peak in the higher temperature range. Surprisingly, higher slow- and fast-relaxing NPQ values were observed in high-light relative to low-light acclimated cultures. Y(II) values peaked at the adaptation temperature regardless of temperature or light acclimation. Our novel findings show the complete temperature working spectrum of Y(II) and how excess energy quenching is managed across a wide range of temperatures in the model microalgal species C. vulgaris. Finally, we draw attention to the fact that the effect of the temperature component in PAM measurements has been wildly underestimated, and results from experiments at room temperature can be misleading.


Asunto(s)
Chlorella vulgaris , Chlorella vulgaris/metabolismo , Clorofila A , Clorofila , Termografía , Fotosíntesis , Luz , Temperatura , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo
5.
Crit Rev Biotechnol ; : 1-16, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035669

RESUMEN

Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.

6.
Cell Mol Biol Lett ; 28(1): 64, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550627

RESUMEN

BACKGROUND: In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS: In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS: DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS: We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.


Asunto(s)
Proteínas de Plantas , Saccharomyces cerevisiae , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ARN Bicatenario/genética , ARN Interferente Pequeño/metabolismo
7.
Bioprocess Biosyst Eng ; 46(2): 297-306, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36571607

RESUMEN

Poly-hydroxy-butyrate (PHB) bioplastic resin can be made directly from atmospheric CO2 using cyanobacteria. However, higher PHB productivities are required before large-scale production is economically viable. Random mutagenesis offers a way to create new production strains with increased PHB yields and increased biomass densities without complex technical manipulation associated with genetically modified organisms. This study used staining with lipid fluorescent dye (BODIPY 493/593) and fluorescence-activated cell sorting (FACS) to select high lipid content mutants and followed this with a well plate growth screen. Thirteen mutants were selected for flask cultivation and two strains produced significantly higher PHB yields (29% and 26% higher than wild type), biomass accumulation (36% and 33% higher than wild type) and volumetric PHB density (75% and 67% higher than wild type). The maximum PHB yielding strain (% dcw) was 12.0%, which was 43% higher than the wild type (8.3% in this study). The highest volumetric PHB density was 18.8 mg PHB/L compared to 10.7 mg PHB/L by the wild type. To develop cyanobacterial strain with higher PHB productivities, the combination of random chemical mutagenesis and FACS holds great potential to promote cyanobacteria bioplastic production becoming economically viable.


Asunto(s)
Cianobacterias , Poliésteres , Citometría de Flujo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Mutagénesis
8.
PLoS Biol ; 17(7): e3000391, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31339877

RESUMEN

Speciation genomic studies aim to interpret patterns of genome-wide variation in light of the processes that give rise to new species. However, interpreting the genomic "landscape" of speciation is difficult, because many evolutionary processes can impact levels of variation. Facilitated by the first chromosome-level assembly for the group, we use whole-genome sequencing and simulations to shed light on the processes that have shaped the genomic landscape during a radiation of monkeyflowers. After inferring the phylogenetic relationships among the 9 taxa in this radiation, we show that highly similar diversity (π) and differentiation (FST) landscapes have emerged across the group. Variation in these landscapes was strongly predicted by the local density of functional elements and the recombination rate, suggesting that the landscapes have been shaped by widespread natural selection. Using the varying divergence times between pairs of taxa, we show that the correlations between FST and genome features arose almost immediately after a population split and have become stronger over time. Simulations of genomic landscape evolution suggest that background selection (BGS; i.e., selection against deleterious mutations) alone is too subtle to generate the observed patterns, but scenarios that involve positive selection and genetic incompatibilities are plausible alternative explanations. Finally, tests for introgression among these taxa reveal widespread evidence of heterogeneous selection against gene flow during this radiation. Combined with previous evidence for adaptation in this system, we conclude that the correlation in FST among these taxa informs us about the processes contributing to adaptation and speciation during a rapid radiation.


Asunto(s)
Flujo Génico , Variación Genética , Genoma de Planta/genética , Genómica/métodos , Mimulus/genética , Selección Genética , Adaptación Fisiológica/genética , Especiación Genética , Genética de Población/métodos , Mimulus/clasificación , Filogenia
9.
Appl Microbiol Biotechnol ; 106(11): 4145-4156, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35599258

RESUMEN

The green microalga Chlamydomonas reinhardtii is emerging as a promising cell biofactory for secreted recombinant protein (RP) production. In recent years, the generation of the broadly used cell wall-deficient mutant strain UVM4 has allowed for a drastic increase in secreted RP yields. However, purification of secreted RPs from the extracellular space of C. reinhardtii strain UVM4 is challenging. Previous studies suggest that secreted RPs are trapped in a matrix of cell wall protein aggregates populating the secretome of strain UVM4, making it difficult to isolate and purify the RPs. To better understand the nature and behaviour of these extracellular protein aggregates, we analysed and compared the extracellular proteome of the strain UVM4 to its cell-walled ancestor, C. reinhardtii strain 137c. When grown under the same conditions, strain UVM4 produced a unique extracellular proteomic profile, including a higher abundance of secreted cell wall glycoproteins. Further characterization of high molecular weight extracellular protein aggregates in strain UVM4 revealed that they are largely comprised of pherophorins, a specific class of cell wall glycoproteins. Our results offer important new insights into the extracellular space of strain UVM4, including strain-specific secreted cell wall proteins and the composition of the aggregates possibly related to impaired RP purification. The discovery of pherophorins as a major component of extracellular protein aggregates will inform future strategies to remove or prevent aggregate formation, enhance purification of secreted RPs, and improve yields of recombinant biopharmaceuticals in this emerging cell biofactory. KEY POINTS: • Extracellular protein aggregates hinder purification of recombinant proteins in C. reinhardtii • Unassembled cell wall pherophorins are major components of extracellular protein aggregates • Known aggregate composition informs future strategies for recombinant protein purification.


Asunto(s)
Chlamydomonas reinhardtii , Pared Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Espacio Extracelular , Glicoproteínas/metabolismo , Agregado de Proteínas , Proteómica , Proteínas Recombinantes/metabolismo
10.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563369

RESUMEN

Many plant viruses express suppressor proteins (VSRs) that can inhibit RNA silencing, a central component of antiviral plant immunity. The most common activity of VSRs is the high-affinity binding of virus-derived siRNAs and thus their sequestration from the silencing process. Since siRNAs share large homologies with miRNAs, VSRs like the Tombusvirus p19 may also bind miRNAs and in this way modulate cellular gene expression at the post-transcriptional level. Interestingly, the binding affinity of p19 varies considerably between different miRNAs, and the molecular determinants affecting this property have not yet been adequately characterized. Addressing this, we analyzed the binding of p19 to the miRNAs 162 and 168, which regulate the expression of the important RNA silencing constituents Dicer-like 1 (DCL1) and Argonaute 1 (AGO1), respectively. p19 binds miRNA162 with similar high affinity as siRNA, whereas the affinity for miRNA168 is significantly lower. We show that specific molecular features, such as mismatches and 'G-U wobbles' on the RNA side and defined amino acid residues on the VSR side, mediate this property. Our observations highlight the remarkable adaptation of VSR binding affinities to achieve differential effects on host miRNA activities. Moreover, they show that even minimal changes, i.e., a single base pair in a miRNA duplex, can have significant effects on the efficiency of the plant antiviral immune response.


Asunto(s)
MicroARNs , Tombusvirus , Antivirales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inmunidad de la Planta/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tombusvirus/genética
11.
Mol Ecol ; 30(1): 343-360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141992

RESUMEN

Dinoflagellates of the family Symbiodiniaceae form mutualistic symbioses with marine invertebrates such as reef-building corals, but also inhabit reef environments as free-living cells. Most coral species acquire Symbiodiniaceae horizontally from the surrounding environment during the larval and/or recruitment phase, however the phylogenetic diversity and ecology of free-living Symbiodiniaceae on coral reefs is largely unknown. We coupled environmental DNA sequencing and genus-specific qPCR to resolve the community structure and cell abundances of free-living Symbiodiniaceae in the water column, sediment, and macroalgae and compared these to coral symbionts. Sampling was conducted at two time points, one of which coincided with the annual coral spawning event when recombination between hosts and free-living Symbiodiniaceae is assumed to be critical. Amplicons of the internal transcribed spacer (ITS2) region were assigned to 12 of the 15 Symbiodiniaceae genera or genera-equivalent lineages. Community compositions were separated by habitat, with water samples containing a high proportion of sequences corresponding to coral symbionts of the genus Cladocopium, potentially as a result of cell expulsion from in hospite populations. Sediment-associated Symbiodiniaceae communities were distinct, potentially due to the presence of exclusively free-living species. Intriguingly, macroalgal surfaces displayed the highest cell abundances of Symbiodiniaceae, suggesting a key role for macroalgae in ensuring the ecological success of corals through maintenance of a continuum between environmental and symbiotic populations of Symbiodiniaceae.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/genética , Arrecifes de Coral , Dinoflagelados/genética , Ecosistema , Filogenia
12.
J Phycol ; 57(1): 111-127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32885422

RESUMEN

Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult to predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e-  · [mol C]-1 ) and was negatively correlated with growth rate (R2  = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling.


Asunto(s)
Electrones , Fitoplancton , Carbono , Ciclo del Carbono , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/metabolismo
13.
Mar Drugs ; 20(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35049875

RESUMEN

Microalgal biotechnology shows considerable promise as a sustainable contributor to a broad range of industrial avenues. The field is however limited by processing methods that have commonly hindered the progress of high throughput screening, and consequently development of improved microalgal strains. We tested various microplate reader and flow cytometer methods for monitoring the commercially relevant pigment fucoxanthin in the marine diatom Phaeodactylum tricornutum. Based on accuracy and flexibility, we chose one described previously to adapt to live culture samples using a microplate reader and achieved a high correlation to HPLC (R2 = 0.849), effectively removing the need for solvent extraction. This was achieved by using new absorbance spectra inputs, reducing the detectable pigment library and changing pathlength values for the spectral deconvolution method in microplate reader format. Adaptation to 384-well microplates and removal of the need to equalize cultures by density further increased the screening rate. This work is of primary interest to projects requiring detection of biological pigments, and could theoretically be extended to other organisms and pigments of interest, improving the viability of microalgae biotechnology as a contributor to sustainable industry.


Asunto(s)
Microalgas , Xantófilas/metabolismo , Animales , Organismos Acuáticos , Biotecnología , Cromatografía Líquida de Alta Presión
14.
J Environ Manage ; 277: 111398, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039702

RESUMEN

Diversion of food waste from landfill disposal to waste-to-energy facilities has become both an environmentally and economically viable option to support the circular bioeconomy. However, the liquid centrate produced during anaerobic digestion is high in total ammonia, with concentrations ~2000 g m-3, and can release gaseous emissions, including ammonia, methane, CO2 and nitrous oxide, to the atmosphere. Further treatment is required before discharge to sewer, or to the environment. Microalgal wastewater treatment systems augmented with CO2 offer a promising and cost-effective treatment solution for reducing both total ammonia concentrations and ammonia volatilisation. In this study, we investigate the effects of augmenting CO2 on nutrient removal and specifically nitrogen losses, as well as biomass productivity under two difference hydraulic retention times (HRT). Both CO2 addition and HRT affect nitrogen losses, with the percentage removal of total ammonia significantly lower (p < 0.01) when CO2 was added to the treatments, while increased HRT significantly increased (p < 0.05) total ammonia percentage removal. Total nitrogen budgets showed significantly lower (p < 0.01) abiotic nitrogen losses from the system when CO2 was added to the culture but at the expense of effluent quality. Both total suspended solids and volatile suspended solids significantly increased (p < 0.01) under longer HRT (8 days), with CO2 addition, while chlorophyll-a biomass significantly increased (p < 0.01) on longer HRT, regardless of CO2 addition. These results demonstrate that, while CO2 augmentation helped to mitigate ammonia losses to atmosphere, the trade-off was poorer effluent quality. Coupling CO2 augmentation with longer HRT increased biomass production and nutrient removal efficiency. This study provides an insight into how simple operational changes can alleviate some of the trade-offs between atmospheric losses and effluent quality. However, in order to manage the trade-off between reduced atmospheric losses and poorer effluent quality, further optimisation of the operation of the microalgal system treating food-waste centrate is required.


Asunto(s)
Microalgas , Eliminación de Residuos , Amoníaco , Biomasa , Dióxido de Carbono , Alimentos , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales
15.
Environ Microbiol ; 21(11): 4196-4211, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31415128

RESUMEN

In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth. Their ecological success may be related to their production of complex toxic polyketide compounds. Ostreopsis species produce potent palytoxin-like compounds (PLTX), which are associated with human skin and eye irritations, and illnesses through the consumption of contaminated seafood. To investigate the genetic basis of PLTX-like compounds, we sequenced and annotated transcriptomes from two PLTX-producing Ostreopsis species; O. cf. ovata, O. cf. siamensis, one non-PLTX producing species, O. rhodesae and compared them to a close phylogenetic relative and non-PLTX producer, Coolia malayensis. We found no clear differences in the presence or diversity of ketosynthase and ketoreductase transcripts between PLTX producing and non-producing Ostreopsis and Coolia species, as both groups contained >90 and > 10 phylogenetically diverse ketosynthase and ketoreductase transcripts, respectively. We report for the first-time type I single-, multi-domain polyketide synthases (PKSs) and hybrid non-ribosomal peptide synthase/PKS transcripts from all species. The long multi-modular PKSs were insufficient by themselves to synthesize the large complex polyether backbone of PLTX-like compounds. This implies that numerous PKS domains, including both single and multi-, work together on the biosynthesis of PLTX-like and other related polyketide compounds.


Asunto(s)
Dinoflagelados/genética , Toxinas Marinas/genética , Transcriptoma , Dinoflagelados/clasificación , Humanos , Toxinas Marinas/biosíntesis , Oxidorreductasas/genética , Filogenia , Sintasas Poliquetidas/genética , Policétidos/química , Metabolismo Secundario
16.
Photosynth Res ; 142(3): 361-368, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31541419

RESUMEN

Chlorophyll a fluorescence is the most widely used method to study photosynthesis and plant stress. While several commercial fluorometers are available, there is a need for a low-cost and highly customisable chlorophyll fluorometer. Such a device would aid in performing high-throughput assessment of photosynthesis, as these instruments can be mass-produced. Novel investigations into photosynthesis can also be performed as a result of the user's ability to modify the devices functionality for their specific needs. Motivated by this, we present an open-source chlorophyll fluorometer based on the Kautsky induction curve (OJIP). The instrument consists of low-cost, easy-to-acquire electrical components and an open-source microcontroller (Arduino Mega) whose performance is equivalent to that of commercial instruments. Two 3D printable Open-JIP configurations are presented, one for higher plants and the other for microalgae cells in suspension. Directions for its construction are presented and the instrument is benchmarked against widely used commercial chlorophyll fluorometers.


Asunto(s)
Clorofila A/química , Fluorometría/instrumentación , Chlorella vulgaris/química , Diseño de Equipo , Fluorescencia , Fluorometría/métodos , Microalgas/química , Microalgas/metabolismo , Plantas/química , Plantas/metabolismo , Synechococcus/química
17.
Theor Popul Biol ; 127: 91-101, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30978307

RESUMEN

Inference with population genetic data usually treats the population pedigree as a nuisance parameter, the unobserved product of a past history of random mating. However, the history of genetic relationships in a given population is a fixed, unobserved object, and so an alternative approach is to treat this network of relationships as a complex object we wish to learn about, by observing how genomes have been noisily passed down through it. This paper explores this point of view, showing how to translate questions about population genetic data into calculations with a Poisson process of mutations on all ancestral genomes. This method is applied to give a robust interpretation to the f4 statistic used to identify admixture, and to design a new statistic that measures covariances in mean times to most recent common ancestor between two pairs of sequences. The method more generally interprets population genetic statistics in terms of sums of specific functions over ancestral genomes, thereby providing concrete, broadly interpretable interpretations for these statistics. This provides a method for describing demographic history without simplified demographic models. More generally, it brings into focus the population pedigree, which is averaged over in model-based demographic inference.


Asunto(s)
Demografía , Genética de Población , Algoritmos , Variación Genética , Humanos , Modelos Genéticos , Linaje , Distribución de Poisson , Densidad de Población
18.
PLoS Comput Biol ; 14(11): e1006581, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30383757

RESUMEN

In this paper we describe how to efficiently record the entire genetic history of a population in forwards-time, individual-based population genetics simulations with arbitrary breeding models, population structure and demography. This approach dramatically reduces the computational burden of tracking individual genomes by allowing us to simulate only those loci that may affect reproduction (those having non-neutral variants). The genetic history of the population is recorded as a succinct tree sequence as introduced in the software package msprime, on which neutral mutations can be quickly placed afterwards. Recording the results of each breeding event requires storage that grows linearly with time, but there is a great deal of redundancy in this information. We solve this storage problem by providing an algorithm to quickly 'simplify' a tree sequence by removing this irrelevant history for a given set of genomes. By periodically simplifying the history with respect to the extant population, we show that the total storage space required is modest and overall large efficiency gains can be made over classical forward-time simulations. We implement a general-purpose framework for recording and simplifying genealogical data, which can be used to make simulations of any population model more efficient. We modify two popular forwards-time simulation frameworks to use this new approach and observe efficiency gains in large, whole-genome simulations of one to two orders of magnitude. In addition to speed, our method for recording pedigrees has several advantages: (1) All marginal genealogies of the simulated individuals are recorded, rather than just genotypes. (2) A population of N individuals with M polymorphic sites can be stored in O(N log N + M) space, making it feasible to store a simulation's entire final generation as well as its history. (3) A simulation can easily be initialized with a more efficient coalescent simulation of deep history. The software for recording and processing tree sequences is named tskit.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Genética de Población , Programas Informáticos , Algoritmos , Simulación por Computador , Frecuencia de los Genes , Genoma , Genotipo , Humanos , Modelos Genéticos , Linaje , Polimorfismo Genético
19.
Nucleic Acids Res ; 45(21): 12441-12454, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040738

RESUMEN

The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.


Asunto(s)
Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , ARN Viral/química , ARN/química , Riboswitch , Secuencias de Aminoácidos , Dimerización , Hepacivirus/genética , Proteína del Factor Nuclear 45/química , Proteínas del Factor Nuclear 90/química , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Mensajero/química , ARN Viral/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
20.
PLoS Genet ; 12(1): e1005703, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26771578

RESUMEN

Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.


Asunto(s)
Flujo Génico/genética , Frecuencia de los Genes , Genética de Población , Teorema de Bayes , Geografía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA