Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biomed Eng Online ; 23(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167089

RESUMEN

BACKGROUND: Balance parameters derived from wearable sensor measurements during postural sway have been shown to be sensitive to experimental variables such as test duration, sensor number, and sensor location that influence the magnitude and frequency-related properties of measured center-of-mass (COM) and center-of-pressure (COP) excursions. In this study, we investigated the effects of test duration, the number of sensors, and sensor location on the reliability of standing balance parameters derived using body-mounted accelerometers. METHODS: Twelve volunteers without any prior history of balance disorders were enrolled in the study. They were asked to perform two 2-min quiet standing tests with two different testing conditions (eyes open and eyes closed). Five inertial measurement units (IMUs) were employed to capture postural sway data from each participant. IMUs were attached to the participants' right legs, the second sacral vertebra, sternum, and the left mastoid processes. Balance parameters of interest were calculated for the single head, sternum, and sacrum accelerometers, as well as, a three-sensor combination (leg, sacrum, and sternum). Accelerometer data were used to estimate COP-based and COM-based balance parameters during quiet standing. To examine the effect of test duration and sensor location, each 120-s recording from different sensor locations was segmented into 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, and 110-s intervals. For each of these time intervals, time- and frequency-domain balance parameters were calculated for all sensor locations. RESULTS: Most COM-based and COP-based balance parameters could be derived reliably for clinical applications (Intraclass-Correlation Coefficient, ICC ≥ 0.90) with a minimum test duration of 70 and 110 s, respectively. The exceptions were COP-based parameters obtained using a sacrum-mounted sensor, especially in the eyes-closed condition, which could not be reliably used for clinical applications even with a 120-s test duration. CONCLUSIONS: Most standing balance parameters can be reliably measured using a single head- or sternum-mounted sensor within a 120-s test duration. For other sensor locations, the minimum test duration may be longer and may depend on the specific test conditions.


Asunto(s)
Pierna , Equilibrio Postural , Humanos , Reproducibilidad de los Resultados , Posición de Pie , Acelerometría
2.
Sensors (Basel) ; 21(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34770729

RESUMEN

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration ("phybrata") sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Humanos , Monitoreo Fisiológico , Máquina de Vectores de Soporte
3.
Phys Chem Chem Phys ; 17(6): 4199-209, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25567107

RESUMEN

Gold was exposed to ethanol solutions containing 0.1 wt% 1-hexyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide (HMIM NTf2), an ionic liquid (IL). The resulting adsorbed layers were interrogated using X-ray photoelectron spectroscopy (XPS - both conventional and synchrotron-based) and spectroscopic ellipsometry. Ellipsometry indicated that the adsorbed layer thickness was smaller than the size of an IL ion pair, with an average determined layer thickness of 0.15 nm. This value indicates that the adsorbed layer on gold is most likely patchy. Conventional XPS revealed that the IL adsorbs irreversibly to gold, with equal amounts of anion and cation in the adsorbed layer. High signal-to-noise synchrotron XPS spectra permitted detailed deconvolution of the S 2p and N 1s peaks for the IL-treated gold, providing more information on adsorbed layer composition and structure. Spectra acquired as a function of X-ray exposure time indicate that non-interacting physisorbed IL components are preferentially removed at the expense of surface bound components, and that anion and cation are both present in the surface bound layer, and also in the layer above. A model structure for the IL adsorbed on gold is proposed.

4.
J Am Chem Soc ; 135(19): 7159-71, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23607786

RESUMEN

The motion of a solid-liquid-liquid contact line over nanorough surfaces is investigated. The surface nanodefects are varied in size, density, and shape. The dynamics of the three-phase contact line on all nanorough substrates studied is thermally activated. However, unlike the motion of a liquid-vapor interface over smooth surfaces, this thermally activated process is not adequately described by the molecular kinetic theory. The molecular parameters extracted from the experiments suggest that on the nanorough surfaces, the motion of the contact line is unlikely to simply consist of molecular adsorption-desorption steps. Thermally activated pinning-depinning events on the surface nanodefects are also important. We investigate the effect of surface nanotopography on the relative importance of these two mechanisms in governing contact line motion. Using a derivation for the hysteresis energy based on Joanny and de Gennes's model, we evaluate the effect of nanotopographical features on the wetting activation free energy and contact line friction. Our results suggest that both solid-liquid interactions and surface pinning strength contribute to the energy barriers hindering the three-phase contact line motion. For relatively low nanodefect densities, the activation free energy of wetting can be expressed as a sum of surface wettability and surface topography contributions, thus providing a direct link between contact line dynamics and roughness parameters.

5.
Langmuir ; 29(8): 2631-9, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23362860

RESUMEN

The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF(4), [BMIM]PF(6), [BMIM]NTf(2), [HMIM]NTf(2), and [OMIM]BF(4)) are used as probe liquids. Droplets of ionic liquids are first spread on an insulated electrode by applying an external voltage (electrowetting) and then allowed to retract (dewetting) when the voltage is switched off. The base area of the droplet varies exponentially during both the electrowetting and retraction processes. The characteristic time increases with the viscosity of the ionic liquid. The electrowetting and retraction kinetics (dynamic contact angle vs contact line speed) can be described by the hydrodynamic or the molecular-kinetic model. Energy dissipation occurs by viscous and molecular routes with a larger proportion of energy dissipated at the three-phase contact line when the liquid meniscus retracts from the solid surface. The outcomes from this research have implications for the design and control of electro-optical imaging systems, microfluidics, and fuel cells.


Asunto(s)
Líquidos Iónicos/química , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Humectabilidad
6.
Anal Chem ; 84(24): 10812-6, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23214507

RESUMEN

Analytical technologies of ultrasmall volume liquid, in particular femtoliter to attoliter liquid, is essential for single-cell and single-molecule analysis, which is becoming highly important in biology and medical diagnosis. Nanofluidic chips will be a powerful tool to realize chemical processes for such a small volume sample. However, a technical challenge exists in fluidic control, which is femtoliter to attoliter liquid generation in air and handling for further chemical analysis. Integrating mechanical valves fabricated by MEMS (microelectric mechanical systems) technology into nanofluidic channels is difficult. Here, we propose a nonmechanical valve, which is a Laplace nanovalve. For this purpose, a nanopillar array was embedded in a nanochannel using a two-step electron beam lithography and dry-etching process. The nanostructure allowed precise wettability patterning with a resolution below 100 nm, which was difficult by photochemical wettability patterning due to the optical diffraction. The basic principle of the Laplace nanovalve was verified, and a 1.7 fL droplet (water in air) was successfully generated and handled for the first time.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Nanoestructuras/química , Nanotecnología/métodos
7.
Nano Lett ; 11(5): 2152-6, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21486057

RESUMEN

Biocompatibility is of paramount importance for drug delivery, tumor labeling, and in vivo application of nanoscale bioprobes. Until now, biocompatible surface processing has typically relied on PEGylation and other surface coatings, which, however, cannot minimize clearance by macrophages or the renal system but may also increase the risk of chemical side effects. Cell membranes provide a generic and far more natural approach to the challenges of encapsulation and delivery in vivo. Here we harness for the first time living cells as "factories" to manufacture cell membrane capsules for encapsulation and delivery of drugs, nanoparticles, and other biolabels. Furthermore, we demonstrate that the built-in protein channels of the new capsules can be utilized for controlled release of encapsulated reagents.


Asunto(s)
Materiales Biocompatibles/química , Nanotecnología/métodos , Cápsulas , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Macrófagos/metabolismo , Microscopía Fluorescente/métodos , Nanopartículas/química , Polietilenglicoles/química , Propiedades de Superficie
8.
Phys Chem Chem Phys ; 13(9): 3952-9, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21240433

RESUMEN

The spontaneous spreading of ionic liquids on a fluoropolymer surface (Teflon AF1600) in air is investigated by high-speed video microscopy. Six ionic liquids (EMIM BF(4), BMIM BF(4), OMIM BF(4), EMIM NTf(2), BMIM NTf(2) and HMIM NTf(2)) are used as probe liquids. The dependence of the dynamic contact angle on contact line velocity is interpreted with a hydrodynamic model and a molecular-kinetic model. The usefulness of the hydrodynamic model is rather limited. There is a good correspondence between the molecular dimensions of the liquids and the physical parameters of the molecular-kinetic model. The viscous and molecular-kinetic contributions to energy dissipation are calculated, revealing that energy is dissipated in the bulk as well as at the contact line during dynamic wetting. There are wide ramifications of these results in areas ranging from lubrication and biology to minerals processing and petroleum recovery.

9.
J Chem Phys ; 134(14): 145101, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21495770

RESUMEN

We introduce a new approach to analyze single-molecule Förster resonance energy transfer (FRET) data. The method recognizes that FRET efficiencies assumed by traditional ensemble methods are unobservable for single molecules. We propose instead a method to predict distributions of FRET parameters obtained directly from the data. Distributions of FRET rates, given the data, are precisely defined using Bayesian methods and increase the information derived from the data. Benchmark comparisons find that the response time of the new method outperforms traditional methods of averaging. Our approach makes no assumption about the number or distribution of underlying FRET states. The new method also yields information about joint parameter distributions going beyond the standard framework of FRET analysis. For example, the running distribution of FRET means contains more information than any conceivable single measure of FRET efficiency. The method is tested against simulated data and then applied to a pilot-study sample of calmodulin molecules immobilized in lipid vesicles, revealing evidence for multiple dynamical states.


Asunto(s)
Algoritmos , Teorema de Bayes , Calmodulina/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Simulación por Computador , Liposomas/química , Modelos Teóricos
10.
Gait Posture ; 90: 137-140, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481263

RESUMEN

BACKGROUND: Quantitative assessments of activities of daily living (ADL) play an essential role in evaluating the impact of disease and interventions on people's quality of life. Motion capture systems traditionally used for quantitative assessments of postural transitions and movement associated with ADL are limited to the laboratory setting. Wearable accelerometers can remove these limitations and enable easier-to-use, longer-term, and remote functional evaluations. OBJECTIVE: To investigate the validity of a single tri-axial accelerometer mounted on the head for monitoring postural transition and the timed-up-and-go test. METHODS: Two accelerometers with a sampling frequency of 100 Hz were attached to twelve able-bodied study participants' sternum and right mastoid process. We developed algorithms for the functional calibration of accelerometers and the detection of the postural transitions by measuring the head inclination angle and variations of the gravitational components of the accelerometer readout. Participants performed a battery of ADL tests involving a wide variety of postural transitions. The head-mounted accelerometers results were compared with a sternum-mounted accelerometer and validated against a video motion capture system as a gold standard reference. RESULTS AND SIGNIFICANCE: The results indicate that, utilizing our proposed algorithm, a single tri-axial accelerometer mounted on the head can deliver high accuracy (>95 %), sensitivity (>90 %), and specificity (100 %) for detecting both postural transitions and walking events. Together with the small size and unobtrusive placement of the head-mounted accelerometer, these results demonstrate an attractive solution for the reliable assessment of ADLs and clinical evaluations based on functional tests such as the timed-up-and-go test.


Asunto(s)
Actividades Cotidianas , Equilibrio Postural , Acelerometría , Algoritmos , Humanos , Calidad de Vida , Estudios de Tiempo y Movimiento
11.
J Am Chem Soc ; 132(24): 8301-8, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20507151

RESUMEN

A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF(4)) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (approximately 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water-glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes.

12.
Langmuir ; 26(20): 15865-74, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20853820

RESUMEN

The adsorption of carboxymethyl cellulose (CMC) onto a hydrophobic self-assembled monolayer has been characterized using the quartz crystal microbalance (with dissipation monitoring, QCM-D). Adsorption was studied as a function of initial solution conditions. CMC adsorbs to a greater extent at high ionic strength (10(-1) M KCl as opposed to 10(-2) M KCl) or low pH (3 as opposed to 9). The solution conditions that yielded the lowest initial adsorbed amount (10(-2) M KCl, pH 9) were used as a reference to investigate the response of the adsorbed layer to a switch in solution conditions after adsorption (i.e., to higher ionic strength (10(-1) M KCl) or lower pH (pH 3)). The adsorbed layer released significant amounts of hydration water after each solution switch, as determined by the QCM-D measurements. This expulsion of hydration water was fully reversible. For the two solution switches, reducing the solution pH resulted in a more pronounced change in the amount of hydration water within the adsorbed CMC, accompanied by a distinct conformational change, as determined from a QCM D-f plot. In addition to studying adsorption using QCM-D, the effect of adsorbed CMC on surface hydrophobicity has been investigated using captive bubble contact angle measurements. The effect of the polymer on the contact angle of the surface was seen to be greatest when adsorbed at low pH or at higher ionic strength. CMC was also seen to have a significantly enhanced ability to reduce the surface hydrophobicity after both the ionic strength and pH switches, lowering the advancing water contact angle by 6 and 23° and the receding water contact angle by 10 and 40° for the ionic strength and pH switches, respectively. As with the change in hydration water content, the change in the contact angle of the polymer-coated surface following the solution switches was reversible.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Interacciones Hidrofóbicas e Hidrofílicas , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Tecnicas de Microbalanza del Cristal de Cuarzo , Soluciones , Propiedades de Superficie , Humectabilidad
13.
Langmuir ; 26(2): 860-5, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-19702258

RESUMEN

The wettability of surfaces microstructured with square pillars was studied, where the static advancing contact angle on the planar surface was 72 degrees. We observed elevated advancing angles (up to 140 degrees) on these structures for droplets in the Wenzel state. No air was trapped in the structured surfaces beneath the liquid, ruling out the well-known Lotus leaf effect. Instead, we show that the apparent hydrophobicity is related to contact line pinning at the pillar edges, giving a strong dependence of wetting hysteresis on the fraction of the contact line pinned on pillars. Simulating the contact line pinning on these surfaces showed similar behavior to our measurements, revealing both strong pinning at the edges of the pillars as well as mechanistic details.

14.
Langmuir ; 26(22): 17218-24, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20945854

RESUMEN

The wettability of a titania surface, partially covered with octadecyltrihydrosilane, has been investigated as a function of solution pH. The results show that surface charge affects both static wettability and wetting kinetics. The static contact angle decreases above and below the point of zero charge of the titania surface in a Lippman-like manner as the pH is altered. The dependence of dynamic contact angle on velocity is also affected by pH. The molecular-kinetic theory (MKT) is used to interpret the dynamic contact angle data. The frequency of molecular displacement κ(0) strongly varies with surface charge, whereas the mean molecular displacement length λ is essentially unaffected. There is an exponential dependence of contact-line friction upon work of adhesion, which is varied simply by altering the pH.

15.
Phys Chem Chem Phys ; 12(41): 13724-9, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-20844783

RESUMEN

We report on the influence of heat treatment on the surface chemistry of an α-alumina crystal. We compare its electrical double layer behaviour with that of 150 nm diameter α-Al(2)O(3) particles. Surface spectroscopy and zeta potential studies are used to understand the changes in surface chemistry. The pH(pzc) of an α-Al(2)O(3) (0001) single crystal (∼4) is more acidic than that of α-Al(2)O(3) particles (8.5), a difference explained by the dominance of [triple bond, length as m-dash]Al(2)OH surface groups on the single crystals and their charging behaviour. Heat treatment of the alumina surface causes a substantial decrease in the number of surface OH groups. Heating at 500 °C decreases the surface density of hydroxyl groups. Heating at 1050 °C also affects surface morphology and surface chemistry. The increased magnitude of the zeta potential and the pH(pzc) shift to lower pH suggest a surface reconstruction and the appearance of more acidic aluminium sites.

16.
Phys Chem Chem Phys ; 12(39): 12499-512, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20721389

RESUMEN

The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the differential capacitance/potential curves. For different systems these curves have various overall shapes, but all include several extremes and a common minimum near the open circuit potential. We attribute this minimum to the potential of zero charge (PZC). Significantly, the differential capacitance generally decreases if the applied potential is large and moving away from the PZC. This is attributed to lattice saturation [A. A. Kornyshev, J. Phys. Chem. B, 2007, 111, 5545] effects which result in a thicker double layer. The differential capacitance of the double layer grows and specific adsorption diminishes with increasing temperature. Specific adsorption of both cations and anions influences the shapes of curves close to the PZC. The general shape of differential capacitance/potential does not depend strongly on the identity of the electrode material.


Asunto(s)
Carbono/química , Oro/química , Líquidos Iónicos/química , Platino (Metal)/química , Espectroscopía Dieléctrica , Capacidad Eléctrica , Electroquímica , Electrodos , Temperatura
17.
Phys Chem Chem Phys ; 12(43): 14527-33, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20931115

RESUMEN

The contact between fine hydrophilic α-Al(2)O(3) particles and nitrogen bubbles was studied as a function of solution composition in single bubble capture experiments, where the bubble collection efficiency was measured. The surface charges of both bubble and particle were controlled by varying the electrolyte concentration and pH of the solution. In all experiments the bubbles were negatively charged while the α-Al(2)O(3) particles were either negatively (above pH of the isoelectric point, pH(IEP)) or positively (below pH(IEP)) charged. The collection efficiency was found to be strongly influenced by the surface charge of the particles. The maximum collection efficiency occurred when the bubble and particle were oppositely charged (at low pH values) and at low salt concentration, i.e. when a long range attractive electrostatic interaction is present. In the case where both bubble and particle were of the same charge, the collection efficiency was near to zero within experimental error and was not influenced by either salt concentration or pH. This is the first experimental proof of the concept of 'contactless flotation', first proposed by Derjaguin and Dukhin in 1960, with far reaching implications from minerals processing to biology.


Asunto(s)
Óxido de Aluminio/química , Nitrógeno/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Electricidad Estática , Humectabilidad
18.
Phys Chem Chem Phys ; 12(41): 13816-27, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-20856971

RESUMEN

The structure of the liquid-vacuum interface in room temperature ionic liquids (ILs) is investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS) and synchrotron X-ray photoelectron spectroscopy (SXPS). By varying the polar angle and comparing the results for the chosen ionic liquids, we identify the presence of a surface layer that is chemically different to the bulk. In particular, this layer: (i) is enriched by aliphatic carbon atoms from the saturated carbon chains of the anions and cations, and (ii) contains an unequal distribution of cations and anions in a direction normal to the surface. This unequal distribution creates a potential gradient which extends from the surface into the liquid. We show unequivocally that this layer is not due to the presence of impurities.

19.
Med Devices (Auckl) ; 13: 411-438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324120

RESUMEN

OBJECTIVE: To assess the utility of a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration ("phybrata") sensor to support the clinical diagnosis of concussion, classify and quantify specific concussion-induced physiological system impairments and sensory reweighting, and track individual patient recovery trajectories. METHODS: Data were analyzed from 175 patients over a 12-month period at three clinical sites. Comprehensive clinical concussion assessments were first completed for all patients, followed by testing with the phybrata sensor. Phybrata time series data and spatial scatter plots, eyes open (Eo) and eyes closed (Ec) phybrata powers, average power (Eo+Ec)/2, Ec/Eo phybrata power ratio, time-resolved phybrata spectral density (TRPSD) distributions, and receiver operating characteristic (ROC) curves are compared for individuals with no objective impairments and those clinically diagnosed with concussions and accompanying vestibular impairment, other neurological impairment, or both vestibular and neurological impairments. Finally, pre- and post-injury phybrata case report results are presented for a participant who was diagnosed with a concussion and subsequently monitored during treatment, rehabilitation, and return-to-activity clearance. RESULTS: Phybrata data demonstrate distinct features and patterns for individuals with no discernable clinical impairments, diagnosed vestibular pathology, and diagnosed neurological pathology. ROC curves indicate that the average power (Eo+Ec)/2 may be utilized to support clinical diagnosis of concussion, while Eo and Ec/Eo may be utilized as independent measures to confirm accompanying neurological and vestibular impairments, respectively. All 3 measures demonstrate area under the curve (AUC), sensitivity, and specificity above 90% for their respective diagnoses. Phybrata spectral analyses demonstrate utility for quantifying the severity of concussion-induced physiological impairments, sensory reweighting, and subsequent monitoring of improvements throughout treatment and rehabilitation. CONCLUSION: Phybrata testing assists with objective concussion diagnosis and provides an important adjunct to standard concussion assessment tools by objectively ascertaining neurological and vestibular impairments, guiding targeted rehabilitation strategies, monitoring recovery, and assisting with return-to-sport/work/learn decision-making.

20.
Langmuir ; 25(23): 13290-4, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19860372

RESUMEN

The influence of adsorbed dextrin-based polymers on the attachment of a rising air bubble to a talc surface has been investigated. Liquid film rupture and dynamic contact angle studies have highlighted the major role that adsorbed polymers can play in bubble-particle attachment. No direct link was established between the equilibrium contact angle of polymer-treated talc surfaces and talc flotation recovery. However, clear correlations were observed between the flotation recovery of polymer-treated talc and the measured wetting film rupture time and rate of dewetting for a bubble attaching to a talc basal plane surface treated with the polymers. The retardation of the three-phase contact line expansion caused by the adsorbed polymers was found to have the largest influence on the bubble-particle attachment. The effect of the morphology (coverage, distribution, and shape) of the adsorbed layer on the wetting film rupture and the motion of the receding water front is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA