RESUMEN
The ongoing and projected impacts from human-induced climate change highlight the need for mitigation approaches to limit warming in both the near term (<2050) and the long term (>2050). We clarify the role of non-CO2 greenhouse gases and aerosols in the context of near-term and long-term climate mitigation, as well as the net effect of decarbonization strategies targeting fossil fuel (FF) phaseout by 2050. Relying on Intergovernmental Panel on Climate Change radiative forcing, we show that the net historical (2019 to 1750) radiative forcing effect of CO2 and non-CO2 climate forcers emitted by FF sources plus the CO2 emitted by land-use changes is comparable to the net from non-CO2 climate forcers emitted by non-FF sources. We find that mitigation measures that target only decarbonization are essential for strong long-term cooling but can result in weak near-term warming (due to unmasking the cooling effect of coemitted aerosols) and lead to temperatures exceeding 2 °C before 2050. In contrast, pairing decarbonization with additional mitigation measures targeting short-lived climate pollutants and N2O, slows the rate of warming a decade or two earlier than decarbonization alone and avoids the 2 °C threshold altogether. These non-CO2 targeted measures when combined with decarbonization can provide net cooling by 2030 and reduce the rate of warming from 2030 to 2050 by about 50%, roughly half of which comes from methane, significantly larger than decarbonization alone over this time frame. Our analysis demonstrates the need for a comprehensive CO2 and targeted non-CO2 mitigation approach to address both the near-term and long-term impacts of climate disruption.
Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Clima , Combustibles Fósiles , Calentamiento Global/prevención & controlRESUMEN
The historic Paris Agreement calls for limiting global temperature rise to "well below 2 °C." Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (â¼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.
Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Dióxido de Carbono/análisis , Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecología , Efecto Invernadero , Emisiones de Vehículos/análisisAsunto(s)
Desastres/estadística & datos numéricos , Política Ambiental/legislación & jurisprudencia , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Formulación de Políticas , Aclimatación , Contaminación del Aire/análisis , Atmósfera/química , Dióxido de Carbono/análisis , Desastres/prevención & control , Sequías/estadística & datos numéricos , Calor Extremo , Calentamiento Global/prevención & control , Objetivos , Efecto Invernadero/estadística & datos numéricos , Humanos , Malaria/epidemiología , Océanos y Mares , Política , Medición de Riesgo , Cambio Social , Factores de Tiempo , Incendios Forestales/estadística & datos numéricosRESUMEN
The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.
RESUMEN
Nearly half the world's population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.
Asunto(s)
Clima , Culinaria , Economía , Promoción de la Salud , Política Ambiental , Política de Salud , Humanos , InvestigaciónRESUMEN
Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption. They consist of a mixture of light-absorbing and light-scattering aerosols and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms-the net aerosol forcing effect-is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases. There is, however, at least a fourfold uncertainty in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia, suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers.
RESUMEN
At last, all the major emitters of greenhouse gases (GHGs) have agreed under the Copenhagen Accord that global average temperature increase should be kept below 2 degrees C. This study develops the criteria for limiting the warming below 2 degrees C, identifies the constraints imposed on policy makers, and explores available mitigation avenues. One important criterion is that the radiant energy added by human activities should not exceed 2.5 (range: 1.7-4) watts per square meter (Wm(-2)) of the Earth's surface. The blanket of man-made GHGs has already added 3 (range: 2.6-3.5) Wm(-2). Even if GHG emissions peak in 2015, the radiant energy barrier will be exceeded by 100%, requiring simultaneous pursuit of three avenues: (i) reduce the rate of thickening of the blanket by stabilizing CO(2) concentration below 441 ppm during this century (a massive decarbonization of the energy sector is necessary to accomplish this Herculean task), (ii) ensure that air pollution laws that reduce the masking effect of cooling aerosols be made radiant energy-neutral by reductions in black carbon and ozone, and (iii) thin the blanket by reducing emissions of short-lived GHGs. Methane and hydrofluorocarbons emerge as the prime targets. These actions, even if we are restricted to available technologies for avenues ii and iii, can reduce the probability of exceeding the 2 degrees C barrier before 2050 to less than 10%, and before 2100 to less than 50%. With such actions, the four decades we have until 2050 should be exploited to develop and scale-up revolutionary technologies to restrict the warming to less than 1.5 degrees C.
Asunto(s)
Calentamiento Global , Tecnología Química Verde , Dióxido de Carbono/normas , Dinamarca , Efecto Invernadero , Humanos , Factores de TiempoRESUMEN
Use of improved (biomass) cookstoves (ICs) has been widely proposed as a Black Carbon (BC) mitigation measure with significant climate and health benefits. ICs encompass a range of technologies, including natural draft (ND) stoves, which feature structural modifications to enhance air flow, and forced draft (FD) stoves, which additionally employ an external fan to force air into the combustion chamber. We present here, under Project Surya, the first real-time in situ Black Carbon (BC) concentration measurements from five commercial ICs and a traditional (mud) cookstove for comparison. These experiments reveal four significant findings about the tested stoves. First, FD stoves emerge as the superior IC technology, reducing plume zone BC concentration by a factor of 4 (compared to 1.5 for ND). Indoor cooking-time BC concentrations, which varied from 50 to 1000 µg m(-3) for the traditional mud cookstove, were reduced to 5-100 µg m(-3) by the top-performing FD stove. Second, BC reductions from IC models in the same technology category vary significantly: for example, some ND models occasionally emit more BC than a traditional cookstove. Within the ND class, only microgasification stoves were effective in reducing BC. Third, BC concentration varies significantly for repeated cooking cycles with same stove (standard deviation up to 50% of mean concentration) even in a standardized setup, highlighting inherent uncertainties in cookstove performance. Fourth, use of mixed fuel (reflective of local practices) increases plume zone BC concentration (compared to hardwood) by a factor of 2 to 3 across ICs.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Biomasa , Composición Familiar , Artículos Domésticos , Hollín/análisis , Culinaria , India , Factores de Tiempo , MaderaRESUMEN
Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.
Asunto(s)
Dióxido de Carbono/análisis , Cambio Climático , Ambiente , Atmósfera/química , Canadá , Fluorocarburos/análisis , Efecto Invernadero , Humanos , Ozono/análisis , Factores de Riesgo , HollínRESUMEN
Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet's capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geoengineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.
Asunto(s)
Planeta Tierra , Internacionalidad , Humanos , IndustriasRESUMEN
Introduction. Weather-related disasters, such as wildfires exacerbated by a rise in global temperatures, need to be better studied in terms of their mental health impacts. This study focuses on the mental health sequelae of the deadliest wildfire in California to date, the Camp Fire of 2018. Methods. We investigated a sample of 725 California residents with different degrees of disaster exposure and measured mental health using clinically validated scales for post-traumatic stress disorder (PTSD), major depressive disorder (MDD) and generalized anxiety disorder (GAD). Data were collected at a chronic time-point, six months post-wildfire. We used multiple regression analyses to predict the mental health outcomes based on self-reported fire exposure. Additionally, we included vulnerability and resilience factors in hierarchical regression analyses. Results. Our primary finding is that direct exposure to large scale fires significantly increased the risk for mental health disorders, particularly for PTSD and depression. Additionally, the inclusion of vulnerability and resilience factors in the hierarchical regression analyses led to the significantly improved prediction of all mental health outcomes. Childhood trauma and sleep disturbances exacerbated mental health symptoms. Notably, self-reported resilience had a positive effect on mental health, and mindfulness was associated with significantly lower depression and anxiety symptoms. Conclusion. Overall, our study demonstrated that climate-related extreme events, such as wildfires, can have severe mental illness sequelae. Moreover, we found that pre-existing stressful life events, resilient personality traits and lifestyle factors can play an important role in the prevalence of psychopathology after such disasters. Unchecked climate change projected for the latter half of this century may severely impact the mental wellbeing of the global population, and we must find ways to foster individual resiliency.
Asunto(s)
Trastorno Depresivo Mayor , Desastres , Trastornos por Estrés Postraumático , Incendios Forestales , Niño , Cambio Climático , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/etiología , Humanos , Salud Mental , Trastornos por Estrés Postraumático/epidemiologíaRESUMEN
Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.
Asunto(s)
Contaminación del Aire Interior/prevención & control , Culinaria/instrumentación , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Biomasa , Monóxido de Carbono/análisis , Culinaria/normas , Utensilios de Comida y Culinaria/normas , Utensilios de Comida y Culinaria/estadística & datos numéricos , Humanos , India , Exposición por Inhalación/análisis , Exposición por Inhalación/prevención & control , Exposición por Inhalación/estadística & datos numéricos , Material Particulado/análisisRESUMEN
The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundariesclimate change and biosphere integrityhave been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
Asunto(s)
Evolución Biológica , Cambio Climático , Planeta Tierra , Pérdida de Ozono , Atmósfera , Agua Dulce , HumanosRESUMEN
Improved cook stoves (ICS) have been widely touted for their potential to deliver the triple benefits of improved household health and time savings, reduced deforestation and local environmental degradation, and reduced emissions of black carbon, a significant short-term contributor to global climate change. Yet diffusion of ICS technologies among potential users in many low-income settings, including India, remains slow, despite decades of promotion. This paper explores the variation in perceptions of and preferences for ICS in Uttar Pradesh and Uttarakhand, as revealed through a series of semi-structured focus groups and interviews from 11 rural villages or hamlets. We find cautious interest in new ICS technologies, and observe that preferences for ICS are positively related to perceptions of health and time savings. Other respondent and community characteristics, e.g., gender, education, prior experience with clean stoves and institutions promoting similar technologies, and social norms as perceived through the actions of neighbours, also appear important. Though they cannot be considered representative, our results suggest that efforts to increase adoption and use of ICS in rural India will likely require a combination of supply-chain improvements and carefully designed social marketing and promotion campaigns, and possibly incentives, to reduce the up-front cost of stoves.