Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Learn Mem ; 28(6): 187-194, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34011515

RESUMEN

Research into the neural mechanisms that underlie higher-order cognitive control of eating behavior suggests that ventral hippocampal (vHC) neurons, which are critical for emotional memory, also inhibit energy intake. We showed previously that optogenetically inhibiting vHC glutamatergic neurons during the early postprandial period, when the memory of the meal would be undergoing consolidation, caused rats to eat their next meal sooner and to eat more during that next meal when the neurons were no longer inhibited. The present research determined whether manipulations known to interfere with synaptic plasticity and memory when given pretraining would increase energy intake when given prior to ingestion. Specifically, we tested the effects of blocking vHC glutamatergic N-methyl-D-aspartate receptors (NMDARs) and activity-regulated cytoskeleton-associated protein (Arc) on sucrose ingestion. The results showed that male rats consumed a larger sucrose meal on days when they were given vHC infusions of the NMDAR antagonist APV or Arc antisense oligodeoxynucleotides than on days when they were given control infusions. The rats did not accommodate for that increase by delaying the onset of their next sucrose meal (i.e., decreased satiety ratio) or by eating less during the next meal. These data suggest that vHC NMDARs and Arc limit meal size and inhibit meal initiation.


Asunto(s)
Hipocampo , Receptores de N-Metil-D-Aspartato , Animales , Ingestión de Energía , Conducta Alimentaria , Masculino , Ratas , Ratas Sprague-Dawley
2.
iScience ; 27(3): 109191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433928

RESUMEN

The paucity of preclinical models that recapitulate COVID-19 pathology without requiring SARS-COV-2 adaptation and humanized/transgenic mice limits research into new therapeutics against the frequently emerging variants-of-concern. We developed virus-free models by C57BL/6 mice receiving oropharyngeal instillations of a SARS-COV-2 ribo-oligonucleotide common in all variants or specific to Delta/Omicron variants, concurrently with low-dose bleomycin. Mice developed COVID-19-like lung pathologies including ground-glass opacities, interstitial fibrosis, congested alveoli, and became moribund. Lung tissues from these mice and bronchoalveolar lavage and lung tissues from patients with COVID-19 showed elevated levels of hyaluronic acid (HA), HA-family members, an inflammatory signature, and immune cell infiltration. 4-methylumbelliferone (4-MU), an oral drug for biliary-spasm treatment, inhibits HA-synthesis. At the human equivalent dose, 4-MU prevented/inhibited COVID-19-like pathologies and long-term morbidity; 4-MU and metabolites accumulated in mice lungs. Therefore, these versatile SARS-COV-2 ribo-oligonucleotide oropharyngeal models recapitulate COVID-19 pathology, with HA as its critical mediator and 4-MU as a potential therapeutic for COVID-19.

3.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30693314

RESUMEN

Memory of a recently eaten meal can serve as a powerful mechanism for controlling future eating behavior because it provides a record of intake that likely outlasts most physiological signals generated by the meal. In support, impairing the encoding of a meal in humans increases the amount ingested at the next eating episode. However, the brain regions that mediate the inhibitory effects of memory on future intake are unknown. In the present study, we tested the hypothesis that dorsal hippocampal (dHC) and ventral hippocampal (vHC) glutamatergic pyramidal neurons play a critical role in the inhibition of energy intake during the postprandial period by optogenetically inhibiting these neurons at specific times relative to a meal. Male Sprague Dawley rats were given viral vectors containing CaMKIIα-eArchT3.0-eYFP or CaMKIIα-GFP and fiber optic probes into dHC of one hemisphere and vHC of the other. Compared to intake on a day in which illumination was not given, inhibition of dHC or vHC glutamatergic neurons after the end of a chow, sucrose, or saccharin meal accelerated the onset of the next meal and increased the amount consumed during that next meal when the neurons were no longer inhibited. Inhibition given during a meal did not affect the amount consumed during that meal or the next one but did hasten meal initiation. These data show that dHC and vHC glutamatergic neuronal activity during the postprandial period is critical for limiting subsequent ingestion and suggest that these neurons inhibit future intake by consolidating the memory of the preceding meal.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipocampo/fisiología , Periodo Posprandial/fisiología , Células Piramidales/fisiología , Animales , Sacarosa en la Dieta , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Memoria/fisiología , Inhibición Neural , Optogenética , Ratas Sprague-Dawley , Sacarina , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA