Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biotechnol Bioeng ; 121(5): 1609-1625, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454575

RESUMEN

Digitalization has paved the way for new paradigms such as digital shadows and digital twins for fermentation processes, opening the door for real-time process monitoring, control, and optimization. With a digital shadow, real-time model adaptation to accommodate complex metabolic phenomena such as metabolic shifts of a process can be monitored. Despite the many benefits of digitalization, the potential has not been fully reached in the industry. This study investigates the development of a digital shadow for a very complex fungal fermentation process in terms of microbial physiology and fermentation operation on pilot-scale at Novonesis and the challenges thereof. The process has historically been difficult to optimize and control due to a lack of offline measurements and an absence of biomass measurements. Pilot-scale and lab-scale fermentations were conducted for model development and validation. With all available pilot-scale data, a data-driven soft sensor was developed to estimate the main substrate concentration (glucose) with a normalized root mean squared error (N-RMSE) of 2%. This robust data-driven soft sensor was able to estimate accurately in lab-scale (volume < 20× pilot) with a N-RMSE of 7.8%. A hybrid soft sensor was developed by combining the data-driven soft sensor with a mass balance to estimate the glycerol and biomass concentrations on pilot-scale data with N-RMSEs of 11% and 21%, respectively. A digital shadow modeling framework was developed by coupling a mechanistic model (MM) with the hybrid soft sensor. The digital shadow modeling framework significantly improved the predictability compared with the MM. The contribution of this study brings the application of digital shadows closer to industrial implementation. It demonstrates the high potential of using this type of modeling framework for scale-up and leads the way to a new generation of in silico-based process development.


Asunto(s)
Reactores Biológicos , Glucosa , Fermentación , Reactores Biológicos/microbiología , Glicerol , Biomasa
2.
Environ Sci Technol ; 51(18): 10572-10584, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28673083

RESUMEN

In-sewer transformation of drug biomarkers (excreted parent drugs and metabolites) can be influenced by the presence of biomass in suspended form as well as attached to sewer walls (biofilms). Biofilms are likely the most abundant and biologically active biomass fraction in sewers. In this study, 16 drug biomarkers were selected, including the parent forms and the major human metabolites of mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC). Transformation and sorption of these substances were assessed in targeted batch experiments using laboratory-scale biofilm reactors operated under aerobic and anaerobic conditions. A one-dimensional model was developed to simulate diffusive transport, abiotic and biotic transformation, and partitioning of drug biomarkers. Model calibration to experimental results allowed estimating biotransformation rate constants in sewer biofilms, which were compared to those obtained for suspended biomass. Our results suggest that sewer biofilms can enhance the biotransformation kinetics of most selected compounds. Through scenario simulations, we demonstrated that the estimation of biotransformation rate constants in biofilm can be significantly biased if the boundary layer thickness is not accurately estimated. This study complements our previous investigation on the transformation and sorption of drug biomarkers in the presence of only suspended biomass in untreated sewage. A better understanding of the role of sewer biofilms-also relative to the in-sewer suspended solids-and improved prediction of associated fate processes can result in more accurate estimation of daily drug consumption in urban areas in wastewater-based epidemiological assessments.


Asunto(s)
Biopelículas , Biomarcadores , Drogas Ilícitas/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Humanos , Drogas Ilícitas/análisis , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 50(24): 13397-13408, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27737550

RESUMEN

Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM(ZS). Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.


Asunto(s)
Teorema de Bayes , Aguas Residuales/química , Biomarcadores , Reactores Biológicos , Drogas Ilícitas , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
4.
BMC Public Health ; 16(1): 1035, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27716139

RESUMEN

BACKGROUND: Monitoring the scale of pharmaceuticals, illicit and licit drugs consumption is important to assess the needs of law enforcement and public health, and provides more information about the different trends within different countries. Community drug use patterns are usually described by national surveys, sales and seizure data. Wastewater-based epidemiology (WBE) has been shown to be a reliable approach complementing such surveys. METHOD: This study aims to compare and correlate the consumption estimates of pharmaceuticals, illicit drugs, alcohol, nicotine and caffeine from wastewater analysis and other sources of information. Wastewater samples were collected in 2015 from 8 different European cities over a one week period, representing a population of approximately 5 million people. Published pharmaceutical sale, illicit drug seizure and alcohol, tobacco and caffeine use data were used for the comparison. RESULTS: High agreement was found between wastewater and other data sources for pharmaceuticals and cocaine, whereas amphetamines, alcohol and caffeine showed a moderate correlation. methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and nicotine did not correlate with other sources of data. Most of the poor correlations were explained as part of the uncertainties related with the use estimates and were improved with other complementary sources of data. CONCLUSIONS: This work confirms the promising future of WBE as a complementary approach to obtain a more accurate picture of substance use situation within different communities. Our findings suggest further improvements to reduce the uncertainties associated with both sources of information in order to make the data more comparable.


Asunto(s)
Cafeína , Etanol , Nicotina , Preparaciones Farmacéuticas , Detección de Abuso de Sustancias , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Consumo de Bebidas Alcohólicas , Anfetaminas/administración & dosificación , Anfetaminas/análisis , Bebidas , Cafeína/administración & dosificación , Cafeína/análisis , Estimulantes del Sistema Nervioso Central/administración & dosificación , Estimulantes del Sistema Nervioso Central/análisis , Ciudades , Cocaína/administración & dosificación , Cocaína/análisis , Comercio , Etanol/administración & dosificación , Etanol/análisis , Europa (Continente) , Humanos , Drogas Ilícitas/análisis , Metanfetamina/administración & dosificación , Metanfetamina/análisis , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , N-Metil-3,4-metilenodioxianfetamina/análisis , Nicotina/administración & dosificación , Nicotina/análisis , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/análisis , Trastornos Relacionados con Sustancias , Nicotiana/química , Uso de Tabaco
5.
Sci Total Environ ; 751: 141706, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33181990

RESUMEN

Industrial parks have a high potential for recycling and reusing resources such as water across companies by creating symbiosis networks. In this study, we introduce a mathematical optimization framework for the design of water network integration in industrial parks formulated as a large-scale standard mixed-integer non-linear programming (MINLP) problem. The novelty of our approach relies on i) developing a multi-level incremental optimization framework for water network synthesis, ii) including prior knowledge of water demand growth and projected water scarcity to evaluate the significance of water-saving solutions, iii) incorporating a comprehensive formulation of the water network synthesis problem including multiple pollutants and different treatment units and iv) performing a multi-objective optimization of the network including freshwater savings and relative cost of the network. The significance of the proposed optimization framework is illustrated by applying it to an existing industrial park in a water-scarce region in Kenya. Firstly, we illustrated the benefits of including prior knowledge to prevent an over-design of the network at the early stages. In the case study, we achieved a more flexible and expandable water network with 36% lower unit cost at the early stage and 15% lower unit cost at later stages for overall maximum freshwater savings of 25%. Secondly, multi-objective analysis suggests an optimum freshwater savings of 14% to reduce the unit cost of the network by half. Moreover, the significance of symbiosis networks is highlighted by showing that intra-company connections can only achieve a maximum freshwater savings of 17% with significantly higher unit cost (+45%). Finally, we showed that the values of symbiosis connectivity index in the Pareto front correspond to higher freshwater savings, indicating the significant role of the symbiosis network in the industrial park under study. This is the first study, where all the above elements have been taken into account simultaneously for the design of a water reuse network.

6.
Water Res ; 175: 115653, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208173

RESUMEN

Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe with the aim of estimating quinolones consumption via the analysis of human urinary metabolites in wastewater. This report is also the first pan-European study focussed on the enantiomeric profiling of chiral quinolones in wastewater. By considering loads of (fluoro)quinolones in wastewater within the context of human stereoselective metabolism, we identified cities in Southern Europe characterised by both high usage and direct disposal of unused ofloxacin. In Northern European cities, S-(-)-ofloxacin loads were predominant with respect to R-(+)-ofloxacin. Much more potent, enantiomerically pure S-(-)-ofloxacin was detected in wastewaters from Southern European cities, reflecting consumption of the enantiomerically pure antibiotic. Nalidixic acid, norfloxacin and lomefloxacin were detected in wastewater even though they were not prescribed according to official prescription data. S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were detected in wastewater due to metabolism of moxifloxacin. For the first time, average population-normalised ulifloxacin loads of 22.3 and 1.5 mg day-1 1000 people-1 were reported for Milan and Castellón as a result of prulifloxacin metabolism. Enrichment of flumequine with first-eluting enantiomer in all the samples indicated animal metabolism rather than its direct disposal. Fluoroquinolone loads were compared with qnrS gene encoding quinolone resistance to correlate usage of fluoroquinolone and prevalence of resistance. The highest daily loads of the qnrS gene in Milan corresponded with the highest total quinolone load in Milan proving the hypothesis that higher usage of quinolones is linked with higher prevalence of quinolone resistance genes. Utrecht, with the lowest quinolones usage (low daily loads) had also one of the lowest daily loads of the qnrS gene. However, a similar trend was not observed in Oslo nor Bristol where higher qnrS gene loads were observed despite low quinolone usage.


Asunto(s)
Quinolonas , Aguas Residuales , Animales , Antibacterianos , Ciudades , Farmacorresistencia Bacteriana , Europa (Continente) , Humanos
7.
Sci Total Environ ; 644: 1612-1616, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743873

RESUMEN

Temperature is one of the key factors, influencing the transformation kinetics of organic chemicals. In the context of wastewater-based epidemiology, however, temperature differences among sewer catchments and within the same catchment (due to, e.g., seasonal variations) have been neglected to date as a factor influencing the estimation of illicit drug consumption. In this study, we assessed the influence of temperature on the transformation of biomarkers in wastewater and its ensuing implications on the back-calculation of chemical consumption rate in urban catchments using the example of selected illicit drugs. Literature data, obtained in laboratory-scale experiments, on the stability of drug biomarkers in untreated wastewater at trace levels was systematically reviewed, and transformation rates obtained at different temperatures were collected. Arrhenius-based equations were fitted to empirical data and identified to describe the transformation of selected cocaine and morphine biomarkers at applicability temperature range (from 2-9 °C to 30-31 °C), with estimated exponential Arrhenius coefficients between 1.04 and 1.18. These empirically-derived relationships were used to assess the influence of temperature on the transformation of drug biomarkers during in-sewer transport and its effect on the back-calculation of drug consumption rate in hypothetical urban catchment scenario simulations. Up to 4-fold increase in removal efficiency was estimated when wastewater temperature increased from 15 °C to 25 °C. Findings from this study can help reducing the uncertainty intrinsic to wastewater-based epidemiology studies, and will be beneficial in comparing chemical consumption estimates from different catchments worldwide.


Asunto(s)
Drogas Ilícitas/análisis , Temperatura , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Drogas Ilícitas/química , Modelos Químicos
8.
Environ Int ; 115: 279-284, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621715

RESUMEN

In this work a step forward in investigating the use of prescription drugs, namely erectile dysfunction products, at European level was taken by applying the wastewater-based epidemiology approach. 24-h composite samples of untreated wastewater were collected at the entrance of eight wastewater treatment plants serving the catchment within the cities of Bristol, Brussels, Castellón, Copenhagen, Milan, Oslo, Utrecht and Zurich. A validated analytical procedure with direct injection of filtered aliquots by liquid chromatography-tandem mass spectrometry was applied. The target list included the three active pharmaceutical ingredients (sildenafil, tadalafil and vardenafil) together with (bio)transformation products and other analogues. Only sildenafil and its two human urinary metabolites desmethyl- and desethylsildenafil were detected in the samples with concentrations reaching 60 ng L-1. The concentrations were transformed into normalized measured loads and the estimated actual consumption of sildenafil was back-calculated from these loads. In addition, national prescription data from five countries was gathered in the form of the number of prescribed daily doses and transformed into predicted loads for comparison. This comparison resulted in the evidence of a different spatial trend across Europe. In Utrecht and Brussels, prescription data could only partly explain the total amount found in wastewater; whereas in Bristol, the comparison was in agreement; and in Milan and Oslo a lower amount was found in wastewater than expected from the prescription data. This study illustrates the potential of wastewater-based epidemiology to investigate the use of counterfeit medication and rogue online pharmacy sales.


Asunto(s)
Inhibidores de Fosfodiesterasa 5/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Ciudades , Europa (Continente) , Humanos
9.
Water Res ; 130: 151-160, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216482

RESUMEN

The aim of this paper is to present the first study on spatial and temporal variation in the enantiomeric profile of chiral drugs in eight European cities. Wastewater-based epidemiology (WBE) and enantioselective analysis were combined to evaluate trends in illicit drug use in the context of their consumption vs direct disposal as well as their synthetic production routes. Spatial variations in amphetamine loads were observed with higher use in Northern European cities. Enantioselective analysis showed a general enrichment of amphetamine with the R-(-)-enantiomer in wastewater indicating its abuse. High loads of racemic methamphetamine were detected in Oslo (EF = 0.49 ± 0.02). This is in contrast to other European cities where S-(+)-methamphetamine was the predominant enantiomer. This indicates different methods of methamphetamine synthesis and/or trafficking routes in Oslo, compared with the other cities tested. An enrichment of MDMA with the R-(-)-enantiomer was observed in European wastewaters indicating MDMA consumption rather than disposal of unused drug. MDA's chiral signature indicated its enrichment with the S-(+)-enantiomer, which confirms its origin from MDMA metabolism in humans. HMMA was also detected at quantifiable concentrations in wastewater and was found to be a suitable biomarker for MDMA consumption. Mephedrone was only detected in wastewater from the United Kingdom with population-normalised loads up to 47.7 mg 1000 people-1 day-1. The enrichment of mephedrone in the R-(+)-enantiomer in wastewater suggests stereoselective metabolism in humans, hence consumption, rather than direct disposal of the drug. The investigation of drug precursors, such as ephedrine, showed that their presence was reasonably ascribed to their medical use.


Asunto(s)
Drogas Ilícitas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Anfetamina/análisis , Anfetamina/química , Ciudades/epidemiología , Europa (Continente)/epidemiología , Humanos , Drogas Ilícitas/química , Metanfetamina/análogos & derivados , Metanfetamina/análisis , Metanfetamina/química , Estereoisomerismo , Detección de Abuso de Sustancias/métodos , Trastornos Relacionados con Sustancias/epidemiología , Aguas Residuales/análisis , Contaminantes Químicos del Agua/química
10.
Sci Rep ; 7(1): 9390, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839237

RESUMEN

This study presents a novel statistical approach for identifying sequenced chemical transformation pathways in combination with reaction kinetics models. The proposed method relies on sound uncertainty propagation by considering parameter ranges and associated probability distribution obtained at any given transformation pathway levels as priors for parameter estimation at any subsequent transformation levels. The method was applied to calibrate a model predicting the transformation in untreated wastewater of six biomarkers, excreted following human metabolism of heroin and codeine. The method developed was compared to parameter estimation methods commonly encountered in literature (i.e., estimation of all parameters at the same time and parameter estimation with fix values for upstream parameters) by assessing the model prediction accuracy, parameter identifiability and uncertainty analysis. Results obtained suggest that the method developed has the potential to outperform conventional approaches in terms of prediction accuracy, transformation pathway identification and parameter identifiability. This method can be used in conjunction with optimal experimental designs to effectively identify model structures and parameters. This method can also offer a platform to promote a closer interaction between analytical chemists and modellers to identify models for biochemical transformation pathways, being a prominent example for the emerging field of wastewater-based epidemiology.

11.
Drug Test Anal ; 9(1): 106-114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26888521

RESUMEN

Monitoring population drug use through wastewater-based epidemiology (WBE) is a useful method to quantitatively follow trends and estimate total drug consumption in communities. Concentrations of drug biomarkers might be low in wastewater due to dilution; and therefore analysis of pooled urine (PU) is useful to detect consumed drugs and identify targets of illicit drugs use. The aims of the study were (1) to screen PU and urinated soil (US) samples collected at festivals for illicit drug excretion products using hyphenated techniques; (2) to develop and validate a hydrophilic interaction liquid chromatography - mass spectrometry / mass spectrometry (HILIC-MS/MS) method of quantifying urinary targets of identified drugs in wastewater; and (3) to conduct a 24 h stability study, using PU and US to better reflect the chemical environment for targets in wastewater. Cocaine (COC) and ecstasy-like compounds were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene (CE) had 85-102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA. The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
3,4-Metilenodioxianfetamina/análogos & derivados , Cocaína/orina , Contaminantes Ambientales/análisis , Drogas Ilícitas/orina , N-Metil-3,4-metilenodioxianfetamina/orina , Detección de Abuso de Sustancias/métodos , Aguas Residuales/análisis , 3,4-Metilenodioxianfetamina/análisis , 3,4-Metilenodioxianfetamina/orina , Inhibidores de Captación Adrenérgica/análisis , Inhibidores de Captación Adrenérgica/orina , Cocaína/análisis , Inhibidores de Captación de Dopamina/análisis , Inhibidores de Captación de Dopamina/orina , Contaminantes Ambientales/orina , Humanos , Drogas Ilícitas/análisis , Límite de Detección , N-Metil-3,4-metilenodioxianfetamina/análisis , Suelo/química
12.
Water Res ; 121: 270-279, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28554112

RESUMEN

Human biomonitoring, i.e. the determination of chemicals and/or their metabolites in human specimens, is the most common and potent tool for assessing human exposure to pesticides, but it suffers from limitations such as high costs and biases in sampling. Wastewater-based epidemiology (WBE) is an innovative approach based on the chemical analysis of specific human metabolic excretion products (biomarkers) in wastewater, and provides objective and real-time information on xenobiotics directly or indirectly ingested by a population. This study applied the WBE approach for the first time to evaluate human exposure to pesticides in eight cities across Europe. 24 h-composite wastewater samples were collected from the main wastewater treatment plants and analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates and pyrethroids, by liquid chromatography-tandem mass spectrometry. The mass loads (mg/day/1000 inhabitants) were highest for organophosphates and lowest for triazines. Different patterns were observed among the cities and for the various classes of pesticides. Population weighted loads of specific biomarkers indicated higher exposure in Castellon, Milan, Copenhagen and Bristol for pyrethroids, and in Castellon, Bristol and Zurich for organophosphates. The lowest mass loads (mg/day/1000 inhabitants) were found in Utrecht and Oslo. These results were in agreement with several national statistics related to pesticides exposure such as pesticides sales. The daily intake of pyrethroids was estimated in each city and it was found to exceed the acceptable daily intake (ADI) only in one city (Castellon, Spain). This was the first large-scale application of WBE to monitor population exposure to pesticides. The results indicated that WBE can give new information about the "average exposure" of the population to pesticides, and is a useful complementary biomonitoring tool to study population-wide exposure to pesticides.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales , Ciudades , Europa (Continente) , Humanos , España
13.
Sci Total Environ ; 609: 1582-1588, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28810510

RESUMEN

Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further information is needed to standardize this approach. Wastewater analysis proved useful to providing additional local information on caffeine use.


Asunto(s)
Cafeína/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Biomarcadores/orina , Cafeína/metabolismo , Ciudades , Humanos , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo
14.
Environ Int ; 99: 131-150, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28038971

RESUMEN

The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater biomarkers that could be used for future applications were evaluated. For this purpose, representative chemical classes have been chosen and grouped in four main categories: (i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants present in the environment and food, (iii) those that have the potential to provide information about public health and illness and (iv) those used to estimate the population size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed.


Asunto(s)
Biomarcadores/análisis , Contaminantes Ambientales/análisis , Preparaciones Farmacéuticas/análisis , Densidad de Población , Salud Pública , Aguas Residuales/análisis , Humanos , Estilo de Vida
15.
Chemosphere ; 168: 1032-1041, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27814952

RESUMEN

The popularity of new psychoactive substances (NPS) has grown in recent years, with certain NPS commonly and preferentially consumed even following the introduction of preventative legislation. With the objective to improve the knowledge on the use of NPS, a rapid and very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. Following chromatographic separation on a C18 column within 6 min, the compounds were measured by tandem mass spectrometry in positive ionization mode. The method was optimised and validated for all compounds. Limits of quantification were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation into the stability of these compounds in influent wastewater was also performed, showing that, following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was then applied to influent wastewater samples from eight European countries, in which mephedrone, methylone and MDPV were detected. This work reveals that although NPS use is not as extensive as for classic illicit drugs, the application of a highly sensitive analytical procedure makes their detection in wastewater possible. The developed analytical methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-based epidemiology).


Asunto(s)
Alcaloides/análisis , Drogas Ilícitas/análisis , Fenetilaminas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Ciudades , Monitoreo del Ambiente , Europa (Continente) , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
16.
Sci Rep ; 6: 39055, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976726

RESUMEN

Wastewater analysis has been demonstrated to be a complementary approach for assessing the overall patterns of drug use by a population while the full potential of wastewater-based epidemiology has yet to be explored. F2-isoprostanes are a prototype wastewater biomarker to study the cumulative oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3'-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF2α and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF2α in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000 inhabitants. There were no temporal trends observed in the levels of 8-iso-PGF2α, however, spatial differences were found at the inter-city level correlating to the degree of urbanisation. The 8-iso-PGF2α mass load was found to be strongly associated with that of trans-3'-hydroxycotinine while it showed no correlation with ethyl sulfate. The present study shows the potential for 8-iso-PGF2α as a wastewater biomarker for the assessment of community public health.


Asunto(s)
Cotinina/análogos & derivados , Dinoprost/análogos & derivados , Uso de Tabaco/epidemiología , Aguas Residuales/análisis , Biomarcadores/análisis , Ciudades , Cotinina/análisis , Dinoprost/análisis , Europa (Continente) , Humanos , Noruega , Estrés Oxidativo , Análisis de Regresión , Ésteres del Ácido Sulfúrico/análisis , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA