Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(13): 6841-6856, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246713

RESUMEN

Horizontal gene transfer is tightly regulated in bacteria. Often only a fraction of cells become donors even when regulation of horizontal transfer is coordinated at the cell population level by quorum sensing. Here, we reveal the widespread 'domain of unknown function' DUF2285 represents an 'extended-turn' variant of the helix-turn-helix domain that participates in both transcriptional activation and antiactivation to initiate or inhibit horizontal gene transfer. Transfer of the integrative and conjugative element ICEMlSymR7A is controlled by the DUF2285-containing transcriptional activator FseA. One side of the DUF2285 domain of FseA has a positively charged surface which is required for DNA binding, while the opposite side makes critical interdomain contacts with the N-terminal FseA DUF6499 domain. The QseM protein is an antiactivator of FseA and is composed of a DUF2285 domain with a negative surface charge. While QseM lacks the DUF6499 domain, it can bind the FseA DUF6499 domain and prevent transcriptional activation by FseA. DUF2285-domain proteins are encoded on mobile elements throughout the proteobacteria, suggesting regulation of gene transfer by DUF2285 domains is a widespread phenomenon. These findings provide a striking example of how antagonistic domain paralogues have evolved to provide robust molecular control over the initiation of horizontal gene transfer.


Asunto(s)
Conjugación Genética , Proteobacteria , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transferencia de Gen Horizontal , Proteobacteria/genética , Percepción de Quorum/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
2.
Nucleic Acids Res ; 50(2): 975-988, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34904658

RESUMEN

Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Mesorhizobium , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conjugación Genética , Islas Genómicas , Mesorhizobium/genética , Mesorhizobium/metabolismo , Percepción de Quorum , Simbiosis/genética
3.
Environ Microbiol ; 25(2): 383-396, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36428208

RESUMEN

Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.


Asunto(s)
Bacterias , Técnicas Biosensibles , Bacterias/genética , Genes Bacterianos , Expresión Génica
4.
Nucleic Acids Res ; 49(9): 5177-5188, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33939800

RESUMEN

In Staphylococcus aureus, most multiresistance plasmids lack conjugation or mobilization genes for horizontal transfer. However, most are mobilizable due to carriage of origin-of-transfer (oriT) sequences mimicking those of conjugative plasmids related to pWBG749. pWBG749-family plasmids have diverged to carry five distinct oriT subtypes and non-conjugative plasmids have been identified that contain mimics of each. The relaxasome accessory factor SmpO, encoded by each conjugative plasmid, determines specificity for its cognate oriT. Here we characterized the binding of SmpO proteins to each oriT. SmpO proteins predominantly formed tetramers in solution and bound 5'-GNNNNC-3' sites within each oriT. Four of the five SmpO proteins specifically bound their cognate oriT. An F7K substitution in pWBG749 SmpO switched oriT-binding specificity in vitro. In vivo, the F7K substitution reduced but did not abolish self-transfer of pWBG749. Notably, the substitution broadened the oriT subtypes that were mobilized. Thus, this substitution represents a potential evolutionary intermediate with promiscuous DNA-binding specificity that could facilitate a switch between oriT specificities. Phylogenetic analysis suggests pWBG749-family plasmids have switched oriT specificity more than once during evolution. We hypothesize the convergent evolution of oriT specificity in distinct branches of the pWBG749-family phylogeny reflects indirect selection pressure to mobilize plasmids carrying non-cognate oriT-mimics.


Asunto(s)
Plásmidos/genética , Staphylococcus aureus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Conjugación Genética , Huella de ADN , Evolución Molecular , Filogenia , Plásmidos/clasificación
5.
PLoS Genet ; 14(3): e1007292, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29565971

RESUMEN

Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.


Asunto(s)
Mesorhizobium/genética , Recombinación Genética , Secuencia de Aminoácidos , Cromosomas Bacterianos , ADN Nucleotidiltransferasas/metabolismo , Transferencia de Gen Horizontal , Genes Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Percepción de Quorum , ARN Bacteriano/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Virales/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-31501140

RESUMEN

Horizontal transfer of plasmids encoding antimicrobial resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s, the first CA-MRSA strain isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline, and penicillin resistance genes on plasmid pWBG753 (∼30 kb). WA-5 and pWBG753 appeared only briefly in WA; however, fusidic acid resistance plasmids related to pWBG753 were also present in the first European CA-MRSA isolates at the time. Here, we characterize a 72-kb conjugative plasmid, pWBG731, present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749 family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium, and penicillin resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs), and the BinL resolution system of the ß-lactamase transposon Tn552 An evolutionarily intermediate ∼42-kb nonconjugative plasmid, pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline resistance plasmid pT181. IS257 likely facilitated the replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized nonconjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous community-associated methicillin-sensitive S. aureus (CA-MSSA) isolates. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/genética , Plásmidos/genética , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Genes Bacterianos/genética , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Australia Occidental/epidemiología
7.
Cell Immunol ; 337: 42-47, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770093

RESUMEN

The resurgence of whooping cough reflects novel genetic variants of Bordetella pertussis and inadequate protection conferred by current acellular vaccines (aP). Biofilm is a source of novel vaccine candidates, including membrane protein assembly factor (BamB) and lipopolysaccharide assembly protein (LptD). Responses of BALB/c mice to candidate vaccines included IFN-γ and IL-17a production by spleen and lymph node cells, and serum IgG1 and IgG2a reactive with whole bacteria or aP. Protection was determined using bacterial cultured from lungs of vaccinated mice challenged with virulent B. pertussis. Mice vaccinated with biofilm produced efficient IFN-γ responses and more IL-17a and IgG2a than mice vaccinated with planktonic cells, aP or adjuvant alone. Vaccination with aP produced abundant IgG1 with little IgG2a. Mice vaccinated with aP plus BamB and LptD retained lower bacterial loads than mice vaccinated with aP alone. Whooping cough vaccines formulated with biofilm antigens, including BamB and LptD, may have clinical value.


Asunto(s)
Bordetella pertussis/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Acelulares/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos/inmunología , Biopelículas , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Vacuna contra la Tos Ferina/inmunología , Bazo/inmunología , Vacunación/métodos , Tos Ferina/inmunología
8.
Plasmid ; 104: 102416, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31078551

RESUMEN

Integrative and conjugative elements (ICEs) are chromosomally-integrated mobile genetic elements that excise from their host chromosome and transfer to other bacteria via conjugation. ICEMlSymR7A is the prototypical member of a large family of "symbiosis ICEs" which confer upon their hosts the ability to form a nitrogen-fixing symbiosis with a variety of legume species. Mesorhizobial symbiosis ICEs carry a common core of mobilisation genes required for integration, excision and conjugative transfer. IntS of ICEMlSymR7A enables recombination between the ICEMlSymR7A attachment site attP and the 3' end of the phe-tRNA gene. Here we identified putative IntS attP arm (P) sites within the attP region and demonstrated that the outermost P1 and P5 sites demarcated the minimal region for efficient IntS-mediated integration. We also identified the ICEMlSymR7A origin-of-transfer (oriT) site directly upstream of the relaxase-gene rlxS. The ICEMlSymR7A conjugation system mobilised a plasmid carrying the cloned oriT to Escherichia coli in an rlxS-dependent manner. Surprisingly, an in-frame, markerless deletion mutation in the ICEMlSymR7A recombination directionality factor (excisionase) gene rdfS, but not a mutation in intS, abolished mobilisation, suggesting the rdfS deletion tentatively has downstream effects on conjugation or its regulation. In summary, this work defines two critical cis-acting regions required for excision and transfer of ICEMlSymR7A and related ICEs.


Asunto(s)
Conjugación Genética , Elementos Transponibles de ADN , Islas Genómicas , Integrasas/metabolismo , Origen de Réplica , Secuencia de Bases , Sitios de Unión , Clonación Molecular , ADN Nucleotidiltransferasas , Orden Génico , Transferencia de Gen Horizontal , Motivos de Nucleótidos , Unión Proteica , Recombinación Genética , Simbiosis , Proteínas Virales
9.
Proc Natl Acad Sci U S A ; 113(43): 12268-12273, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27733511

RESUMEN

Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as "genomic islands" within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of attL and attR sites. Sequential recombination between each attL and attR pair produced corresponding attP and attB sites and joined the three fragments to produce a single circular ICE, ICEMcSym1271 A plasmid carrying the three attP sites was used to recreate the process of tripartite ICE integration and to confirm the role of integrase genes intS, intM, and intG in this process. Nine additional tripartite ICEs were identified in diverse mesorhizobia and transfer was demonstrated for three of them. The transfer of tripartite ICEs to nonsymbiotic mesorhizobia explains the evolution of competitive but suboptimal N2-fixing strains found in Western Australian soils. The unheralded existence of tripartite ICEs raises the possibility that multipartite elements reside in other organisms, but have been overlooked because of their unusual biology. These discoveries reveal mechanisms by which integrases dramatically manipulate bacterial genomes to allow cotransfer of disparate chromosomal regions.


Asunto(s)
Elementos Transponibles de ADN/genética , Fabaceae/genética , Transferencia de Gen Horizontal/genética , Recombinación Genética , Conjugación Genética/genética , Fabaceae/crecimiento & desarrollo , Genoma Bacteriano , Islas Genómicas/genética , Integrasas/genética , Mesorhizobium/genética , Mesorhizobium/crecimiento & desarrollo , Plásmidos , Simbiosis/genética
10.
Proc Natl Acad Sci U S A ; 112(13): 4104-9, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25787256

RESUMEN

Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.


Asunto(s)
Sistema de Lectura Ribosómico , Secuencias Repetitivas Esparcidas , Percepción de Quorum , Ribosomas/ultraestructura , Secuencia de Bases , Sitios de Unión , Técnicas de Transferencia de Gen , Islas Genómicas , Espectrometría de Masas , Mesorhizobium/metabolismo , Plantas/microbiología , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Rhizobium/metabolismo , Ribosomas/química , Simbiosis , Factores de Transcripción , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/metabolismo
11.
Plasmid ; 92: 30-36, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28669811

RESUMEN

Integrative and conjugative elements (ICEs) are generally regarded as regions of contiguous DNA integrated within a bacterial genome that are capable of excision and horizontal transfer via conjugation. We recently characterized a unique group of ICEs present in Mesorhizobium spp., which exist as three entirely separate but inextricably linked chromosomal regions termed α, ß and γ. These regions occupy three different recombinase attachment (att) sites; however, they do not excise independently. Rather, they recombine the host chromosome to form a single contiguous region prior to excision and conjugative transfer. Like the single-part ICE carried by M. loti R7A (ICEMlSymR7A), these "tripartite" ICEs (ICE3s) are widespread throughout the Mesorhizobium genus and enable strains to form nitrogen-fixing symbioses with a variety of legumes. ICE3s have likely evolved following recombination between three separate ancestral integrative elements, however, the persistence of ICE3 structure in diverse mesorhizobia is perplexing due to its seemingly unnecessary complexity. In this study, examination of ICE3s revealed that most symbiosis genes are carried on the large α fragment. Some ICE3-ß and γ regions also carry genes that potentially contribute to the symbiosis, or to persistence in the soil environment, but these regions have been frequently subjected to recombination events including deletions, insertions and recombination with genes located on other integrative elements. Examination of a new ICE3 in M. ciceri Ca181 revealed it has jettisoned the genetic cargo from its ß region and recruited a serine recombinase gene within its γ region, resulting in replacement of one of the three ICE3 integration sites. Overall the recombination loci appear to be the only conserved features of the ß and γ regions, suggesting that the tripartite structure itself provides a selective benefit to the element. We propose the ICE3 structure provides enhanced host range, host stability and resistance to destabilization by tandem insertion of competing integrative elements. Furthermore, we suspect the ICE3 tripartite structure increases the likelihood of gene capture from integrative elements sharing the same attachment sites.


Asunto(s)
Conjugación Genética , Elementos Transponibles de ADN , Evolución Molecular , Secuencia de Bases , Islas Genómicas , Mesorhizobium/genética , Plantas/microbiología , Recombinación Genética , Simbiosis
12.
Nucleic Acids Res ; 43(16): 7971-83, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26243776

RESUMEN

Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2-3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus.


Asunto(s)
ADN Bacteriano/química , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Plásmidos/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Conjugación Genética , Secuencia Conservada , Secuencias Invertidas Repetidas , Recombinación Genética , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
J Bacteriol ; 198(6): 888-97, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728193

RESUMEN

UNLABELLED: Antimicrobial resistance in Staphylococcus aureus presents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at the oriT region of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES protein in vitro. Second, pSK156 and pCA347 are nonconjugative Staphylococcus aureus plasmids that contain sequences similar to the oriT region of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate the oriT sequences of these nonconjugative plasmids in vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognate oriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variant oriT mimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-like oriT. These data indicate that the conjugative relaxase in trans mechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCE: Understanding the mechanism of antimicrobial resistance transfer in bacteria such as Staphylococcus aureus is an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of the Staphylococcus aureus multiresistance plasmid pSK41 by its relaxase, NES. This enzyme also processed variant oriT-like sequences found on numerous plasmids previously considered nontransmissible, suggesting that in conjunction with an uncharacterized accessory protein, these plasmids may be transferred horizontally via a relaxase in trans mechanism. These findings have important implications for our understanding of staphylococcal resistance plasmid evolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Conjugación Genética , Roturas del ADN de Cadena Simple , Endonucleasas/metabolismo , Transferencia de Gen Horizontal , Plásmidos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , ADN Bacteriano/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Origen de Réplica
14.
Environ Microbiol ; 18(4): 1264-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26743231

RESUMEN

Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Escherichia coli/metabolismo , Halobacterium salinarum/metabolismo , Proteínas/genética , Serratia/metabolismo , Cianobacterias/genética , Escherichia coli/genética , Halobacterium salinarum/genética , Datos de Secuencia Molecular , Orgánulos , Serratia/genética
15.
Microbiology (Reading) ; 162(8): 1398-1406, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27260167

RESUMEN

Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis.


Asunto(s)
Bilis/metabolismo , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Fibrosis Quística/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Ácidos Teicoicos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Fibrosis Quística/patología , Elementos Transponibles de ADN/genética , Humanos , Pulmón/microbiología , Pulmón/patología , Pruebas de Sensibilidad Microbiana , Transporte de Proteínas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Ácidos Teicoicos/biosíntesis
16.
Mol Microbiol ; 87(1): 1-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23106190

RESUMEN

ICEMlSym(R7A) of Mesorhizobium loti is an integrative and conjugative element (ICE) that confers the ability to form a nitrogen-fixing symbiosis with Lotus species. Horizontal transfer is activated by TraR and N-acyl-homoserine lactone (AHL), which can stimulate ICE excision in 100% of cells. However, in wild-type cultures, the ICE is excised at low frequency. Here we show that QseM, a widely conserved ICE-encoded protein, is an antiactivator of TraR. Mutation of qseM resulted in TraR-dependent activation of AHL production and excision, but did not affect transcription of traR. QseM and TraR directly interacted in a bacterial two-hybrid assay in the presence of AHL. qseM expression was repressed by a DNA-binding protein QseC, which also activated qseC expression from a leaderless transcript. QseC differentially bound two adjacent operator sites, the lower affinity of which overlapped the -35 regions of the divergent qseC-qseM promoters. QseC homologues were identified on ICEs, TraR/TraM-regulated plasmids and restriction-modification cassettes, suggesting a conserved mode of regulation. Six QseC variants with distinct operators were identified that showed evidence of reassortment between mobile elements. We propose that QseC and QseM comprise a bimodal switch that restricts quorum sensing and ICEMlSym(R7A) transfer to a small proportion of cells in the population.


Asunto(s)
Islas Genómicas , Mesorhizobium/fisiología , Percepción de Quorum/genética , Factores de Transcripción/genética , Activación Transcripcional , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal , Homoserina/análogos & derivados , Homoserina/farmacología , Lotus/metabolismo , Lotus/microbiología , Mesorhizobium/genética , Mesorhizobium/metabolismo , Fijación del Nitrógeno/genética , Plásmidos/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simbiosis/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 108(36): 14932-7, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21873216

RESUMEN

Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air-liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas/metabolismo , Percepción de Quorum/fisiología , Serratia/metabolismo , Proteínas Bacterianas/genética , Vesículas Citoplasmáticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Genes Bacterianos/fisiología , Familia de Multigenes/fisiología , Proteínas/genética , Serratia/genética
18.
BMC Genomics ; 14: 822, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24267595

RESUMEN

BACKGROUND: Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. RESULTS: In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was controlled by a putative 5' cis-acting regulatory RNA element. CONCLUSION: Using a combination of transcriptomics and proteomics this study provides a systems-level understanding of Hfq and RsmA regulation and identifies similarities and differences in the regulons of two major regulators. Additionally our study indicates that RsmA regulates both core and variable genome regions and contributes to genome stability.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Serratia/genética , Serratia/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Análisis por Conglomerados , Transporte de Electrón/genética , Flagelos/genética , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mutación , Operón , Prodigiosina/metabolismo , Proteoma , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN , Serratia/patogenicidad , Serratia/virología , Transcriptoma , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Microb Genom ; 9(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748564

RESUMEN

Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative elements (ICESyms) to indigenous mesorhizobia in soils. Evolved symbionts exhibit a wide range in symbiotic effectiveness, with some fixing nitrogen poorly or not at all. Little is known about the genetic diversity and symbiotic potential of indigenous soil mesorhizobia prior to ICESym acquisition. Here we sequenced genomes of 144 Mesorhizobium spp. strains cultured directly from cultivated and uncultivated Australian soils. Of these, 126 lacked symbiosis genes. The only isolated symbiotic strains were either exotic strains used previously as legume inoculants, or indigenous mesorhizobia that had acquired exotic ICESyms. No native symbiotic strains were identified. Indigenous nonsymbiotic strains formed 22 genospecies with phylogenomic diversity overlapping the diversity of internationally isolated symbiotic Mesorhizobium spp. The genomes of indigenous mesorhizobia exhibited no evidence of prior involvement in nitrogen-fixing symbiosis, yet their core genomes were similar to symbiotic strains and they generally lacked genes for synthesis of biotin, nicotinate and thiamine. Genomes of nonsymbiotic mesorhizobia harboured similar mobile elements to those of symbiotic mesorhizobia, including ICESym-like elements carrying aforementioned vitamin-synthesis genes but lacking symbiosis genes. Diverse indigenous isolates receiving ICESyms through horizontal gene transfer formed effective symbioses with Lotus and Biserrula legumes, indicating most nonsymbiotic mesorhizobia have an innate capacity for nitrogen-fixing symbiosis following ICESym acquisition. Non-fixing ICESym-harbouring strains were isolated sporadically within species alongside effective symbionts, indicating chromosomal lineage does not predict symbiotic potential. Our observations suggest previously observed genomic diversity amongst symbiotic Mesorhizobium spp. represents a fraction of the extant diversity of nonsymbiotic strains. The overlapping phylogeny of symbiotic and nonsymbiotic clades suggests major clades of Mesorhizobium diverged prior to introduction of symbiosis genes and therefore chromosomal genes involved in symbiosis have evolved largely independent of nitrogen-fixing symbiosis.


Asunto(s)
Lotus , Mesorhizobium , Transferencia de Gen Horizontal , Mesorhizobium/genética , Simbiosis/genética , Metagenómica , Nitrógeno , Australia , Lotus/microbiología , Suelo
20.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117559

RESUMEN

In 2010 a single isolate of a trimethoprim-resistant multilocus sequence type 5, Panton-Valentine leucocidin-positive, community-associated methicillin-resistant Staphylococcus aureus (PVL-positive ST5 CA-MRSA), colloquially named WA121, was identified in northern Western Australia (WA). WA121 now accounts for ~14 % of all WA MRSA infections. To gain an understanding of the genetic composition and phylogenomic structure of WA121 isolates we sequenced the genomes of 155 WA121 isolates collected 2010-2021 and present a detailed genomic description. WA121 was revealed to be a single clonally expanding lineage clearly distinct from sequenced ST5 strains reported outside Australia. WA121 strains were typified by the presence of the distinct PVL phage φSa2wa-st5, the recently described methicillin resistance element SCCmecIVo carrying the trimethoprim resistance (dfrG) transposon Tn4791, the novel ß-lactamase transposon Tn7702 and the epidermal cell differentiation inhibitor (EDIN-A) plasmid p2010-15611-2. We present evidence that SCCmecIVo together with Tn4791 has horizontally transferred to Staphylococcus argenteus and evidence of intragenomic movement of both Tn4791 and Tn7702. We experimentally demonstrate that p2010-15611-2 is capable of horizontal transfer by conjugative mobilization from one of several WA121 isolates also harbouring a pWBG749-like conjugative plasmid. In summary, WA121 is a distinct and clonally expanding Australian PVL-positive CA-MRSA lineage that is increasingly responsible for infections in indigenous communities in northern and western Australia. WA121 harbours a unique complement of mobile genetic elements and is capable of transferring antimicrobial resistance and virulence determinants to other staphylococci.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Australia , Leucocidinas/genética , Genómica , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA