Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 140(21): 4426-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089470

RESUMEN

Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function.


Asunto(s)
Arterias/embriología , Embrión no Mamífero/fisiología , Hemodinámica/fisiología , Modelos Biológicos , Flujo Pulsátil/fisiología , Pez Cebra/embriología , Animales , Fenómenos Biomecánicos , Viscosidad Sanguínea , Microscopía Confocal , Pinzas Ópticas , Grabación en Video
2.
Cell Tissue Res ; 360(3): 591-608, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25358400

RESUMEN

Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.


Asunto(s)
Desmina/química , Desmina/metabolismo , Enfermedades Musculares/metabolismo , Animales , Desmina/genética , Modelos Animales de Enfermedad , Humanos , Filamentos Intermedios/metabolismo , Modelos Biológicos , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Especificidad de Órganos
3.
Bioconjug Chem ; 26(3): 529-36, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25692462

RESUMEN

High-throughput screening of combinatorial chemical libraries is a powerful approach for identifying targeted molecules. The display of combinatorial peptide libraries on the surface of bacteriophages offers a rapid, economical way to screen billions of peptides for specific binding properties and has impacted fields ranging from cancer to vaccine development. As a modification to this approach, we have previously created a system that enables site-specific insertion of selenocysteine (Sec) residues into peptides displayed pentavalently on M13 phage as pIII coat protein fusions. In this study, we show the utility of selectively derivatizing these Sec residues through the primary amine of small molecules that target a G protein-coupled receptor, the adenosine A1 receptor, leaving the other coat proteins, including the major coat protein pVIII, unmodified. We further demonstrate that modified Sec-phage with multivalent bound agonist binds to cells and elicits downstream signaling with orders of magnitude greater potency than that of unconjugated agonist. Our results provide proof of concept of a system that can create hybrid small molecule-containing peptide libraries and open up new possibilities for phage-drug therapies.


Asunto(s)
Bacteriófago M13/metabolismo , Receptor de Adenosina A1/metabolismo , Animales , Sitios de Unión/fisiología , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Unión Proteica/fisiología
4.
Nat Commun ; 7: 11646, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27221222

RESUMEN

The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis.


Asunto(s)
Fibronectinas/metabolismo , Válvulas Cardíacas/embriología , Factores de Transcripción de Tipo Kruppel/metabolismo , Mecanotransducción Celular , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Pez Cebra
5.
Cell Rep ; 11(10): 1564-76, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26051936

RESUMEN

Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are unclear. Using live, high-resolution microscopy, we show that Desmin loss of function and Desmin aggregates promote skeletal muscle defects and alter heart biomechanics. In addition, we show that the calcium dynamics associated with heart contraction are impaired and are associated with sarcoplasmic reticulum dilatation as well as abnormal subcellular distribution of Ryanodine receptors. Our results demonstrate that desminopathies are associated with perturbed excitation-contraction coupling machinery and that aggregates are more detrimental than Desmin loss of function. Additionally, we show that pharmacological inhibition of aggregate formation and Desmin knockdown revert these phenotypes. Our data suggest alternative therapeutic approaches and further our understanding of the molecular determinants modulating Desmin aggregate formation.


Asunto(s)
Cardiomiopatías/genética , Desmina/genética , Desmina/metabolismo , Corazón/fisiología , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Animales , Fenómenos Biomecánicos , Cardiomiopatías/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Humanos , Distrofias Musculares/patología , Mutación , Pez Cebra
6.
Dev Cell ; 32(2): 181-90, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25625207

RESUMEN

Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor ß1 integrin and occurs in the absence of blood flow. Downregulation of ß1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a ß1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.


Asunto(s)
Movimiento Celular/fisiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Integrina beta1/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neovascularización Patológica/metabolismo , Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Adhesión Celular/fisiología , Movimiento Celular/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Familia de Proteínas EGF , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Pez Cebra
7.
Cell Rep ; 6(5): 799-808, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24561257

RESUMEN

VIDEO ABSTRACT: The pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we show, by noninvasive, high-resolution imaging of live zebrafish embryos, that endothelial cilia progressively deflect at the onset of blood flow and that the deflection angle correlates with calcium levels in endothelial cells. We demonstrate that alterations in shear stress, ciliogenesis, or expression of the calcium channel PKD2 impair the endothelial calcium level and both increase and perturb vascular morphogenesis. Altogether, these results demonstrate that endothelial cilia constitute a highly sensitive structure that permits the detection of low shear forces during vascular morphogenesis.


Asunto(s)
Sistema Cardiovascular/embriología , Pez Cebra/embriología , Animales , Células Cultivadas , Cilios/fisiología , Embrión no Mamífero/irrigación sanguínea , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/ultraestructura , Neovascularización Fisiológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA