RESUMEN
Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein "staphylococcal peroxidase inhibitor" (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of human MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing.
Asunto(s)
Peroxidasa/antagonistas & inhibidores , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Humanos , Modelos Moleculares , Neutrófilos/fisiología , Fagocitosis , Unión Proteica , Conformación Proteica , Staphylococcus aureus/metabolismo , Regulación hacia ArribaRESUMEN
The heme-containing enzyme myeloperoxidase (MPO) is critical for optimal antimicrobial activity of human neutrophils. We recently discovered that the bacterium Staphylococcus aureus expresses a novel immune evasion protein, called SPIN, that binds tightly to MPO, inhibits MPO activity, and contributes to bacterial survival following phagocytosis. A co-crystal structure of SPIN bound to MPO suggested that SPIN blocks substrate access to the catalytic heme by inserting an N-terminal ß-hairpin into the MPO active-site channel. Here, we describe a series of experiments that more completely define the structure/function relationships of SPIN. Whereas the SPIN N terminus adopts a ß-hairpin confirmation upon binding to MPO, the solution NMR studies presented here are consistent with this region of SPIN being dynamically structured in the unbound state. Curiously, whereas the N-terminal ß-hairpin of SPIN accounts for â¼55% of the buried surface area in the SPIN-MPO complex, its deletion did not significantly change the affinity of SPIN for MPO but did eliminate the ability of SPIN to inhibit MPO. The flexible nature of the SPIN N terminus rendered it susceptible to proteolytic degradation by a series of chymotrypsin-like proteases found within neutrophil granules, thereby abrogating SPIN activity. Degradation of SPIN was prevented by the S. aureus immune evasion protein Eap, which acts as a selective inhibitor of neutrophil serine proteases. Together, these studies provide insight into MPO inhibition by SPIN and suggest possible functional synergy between two distinct classes of S. aureus immune evasion proteins.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Peroxidasa/química , Peroxidasa/metabolismo , Infecciones Estafilocócicas/enzimología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Peroxidasa/genética , Unión Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genéticaRESUMEN
Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.
Asunto(s)
Neutrófilos/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Staphylococcus aureus/metabolismo , Animales , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Biocatálisis , Espacio Extracelular/metabolismo , Femenino , Humanos , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Ratones Endogámicos C57BL , Modelos Moleculares , Infecciones Estafilocócicas/patologíaRESUMEN
The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.
Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , C3 Convertasa de la Vía Alternativa del Complemento/antagonistas & inhibidores , Vía Clásica del Complemento/inmunología , Lectina de Unión a Manosa de la Vía del Complemento/inmunología , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Complemento C2/inmunología , Complemento C2/metabolismo , Complemento C3b/inmunología , Complemento C3b/metabolismo , Complemento C4b/inmunología , Complemento C4b/metabolismo , Citotoxicidad Inmunológica , Humanos , Modelos Inmunológicos , Neutrófilos/inmunología , Fagocitosis/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismoRESUMEN
Complement is a network of interacting circulatory and cell surface proteins that recognizes, marks, and facilitates clearance of microbial invaders. To evade complement attack, the pathogenic organism Staphylococcus aureus expresses a number of secreted proteins that interfere with activation and regulation of the complement cascade. Staphylococcal complement inhibitors (SCINs) are one important class of these immunomodulators and consist of three active members (SCIN-A/-B/-C). SCINs inhibit a critical enzymatic complex, the alternative pathway C3 convertase, by targeting a functional "hot spot" on the central opsonin of complement, C3b. Although N-terminal truncation mutants of SCINs retain complement inhibitory properties, they are significantly weaker binders of C3b. To provide a structural basis for this observation, we undertook a series of crystallographic and NMR dynamics studies on full-length SCINs. This work reveals that N-terminal SCIN domains are characterized by a conformationally dynamic helical motif. C3b binding and functional experiments further demonstrate that this sequence-divergent N-terminal region of SCINs is both functionally important and context-dependent. Finally, surface plasmon resonance data provide evidence for the formation of inhibitor·enzyme·substrate complexes ((SCIN·C3bBb)·C3). Similar to the (SCIN·C3bBb)(2) pseudodimeric complexes, ((SCIN·C3bBb)·C3) interferes with the interaction of complement receptors and C3b. This activity provides an additional mechanism by which SCIN couples convertase inhibition to direct blocking of phagocytosis. Together, these data suggest that tethering multi-host protein complexes by small modular bacterial inhibitors may be a global strategy of immune evasion used by S. aureus. The work presented here provides detailed structure-activity relationships and improves our understanding of how S. aureus circumvents human innate immunity.
Asunto(s)
C3 Convertasa de la Vía Alternativa del Complemento/química , Complemento C3b/química , Proteínas Inactivadoras de Complemento/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Inactivadoras de Complemento/química , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X/métodos , Humanos , Sistema Inmunológico , Inmunidad Innata , Espectroscopía de Resonancia Magnética/métodos , Fagocitosis , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , Resonancia por Plasmón de SuperficieRESUMEN
To survive in immune-competent hosts, the pathogen Staphylococcus aureus expresses and secretes a sophisticated array of proteins that inhibit the complement system. Among these are the staphylococcal complement inhibitors (SCIN), which are composed of three active proteins (SCIN-A, -B, and -C) and one purportedly inactive member (SCIN-D or ORF-D). Because previous work has focused almost exclusively on SCIN-A, we sought to provide initial structure/function information on additional SCIN proteins. To this end we determined crystal structures of an active, N-terminal truncation mutant of SCIN-B (denoted SCIN-B18-85) both free and bound to the C3c fragment of complement component C3 at 1.5 and 3.4 Å resolution, respectively. Comparison of the C3c/SCIN-B18-85 structure with that of C3c/SCIN-A revealed that both proteins target the same functional hotspot on the C3b/C3c surface yet harbor diversity in both the type of residues and interactions formed at their C3b/C3c interfaces. Most importantly, these structures allowed identification of Arg44 and Tyr51 as residues key for SCIN-B binding to C3b and subsequent inhibition of the AP C3 convertase. In addition, we also solved several crystal structures of SCIN-D to 1.3 Å limiting resolution. This revealed an unexpected structural deviation in the N-terminal α helix relative to SCIN-A and SCIN-B. Comparative analysis of both electrostatic potentials and surface complementarity suggest a physical explanation for the inability of SCIN-D to bind C3b/C3c. Together, these studies provide a more thorough understanding of immune evasion by S. aureus and enhance potential use of SCIN proteins as templates for design of complement targeted therapeutics.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Convertasas de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/farmacología , Convertasas de Complemento C3-C5/antagonistas & inhibidores , Complemento C3c/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Estructura Terciaria de ProteínaRESUMEN
Hymeglusin (1233A, F244, L-659-699) is established as a specific ß-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 Å) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.
Asunto(s)
Enterococcus faecalis/enzimología , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados/farmacología , Hidroximetilglutaril-CoA Sintasa/antagonistas & inhibidores , Lactonas/farmacología , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ácidos Grasos Insaturados/química , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Humanos , Hidroxilamina/química , Hidroxilamina/farmacología , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Cinética , Lactonas/química , Modelos Moleculares , Estructura Molecular , Unión Proteica , Difracción de Rayos XRESUMEN
Our understanding of both the nature and diversity of Staphylococcal immune evasion proteins has increased tremendously throughout the last several years. Among this group of molecules, members of the SCIN and Efb families of complement inhibitors have been the subject of particularly intense study. This work has demonstrated that both types of proteins exert their primary function by inhibiting C3 convertases, which lie at the heart of the complement-mediated immune response. Despite this similarity, however, significant differences in structure/function relationships and mechanisms of action exist between these bacterial proteins. Furthermore, divergent secondary effects on host immune responses have also been described for these two protein families. This chapter summarizes recent advances toward understanding the structure, function, and mechanism of the SCIN and Efb families, and suggests potential directions for the field over the coming years.
Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas Inactivadoras del Complemento C3b/inmunología , Proteínas Inactivadoras de Complemento/inmunología , Inmunidad Innata/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Proteínas Bacterianas/química , Proteínas Inactivadoras del Complemento C3b/química , Proteínas Inactivadoras de Complemento/química , Humanos , Infecciones Estafilocócicas/microbiología , Relación Estructura-ActividadRESUMEN
The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.
Asunto(s)
Anticuerpos Monoclonales , Factor XII , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Factor XII/genética , Factor XII/metabolismo , Quininógeno de Alto Peso Molecular/metabolismoRESUMEN
Staphylococcus aureus secretes a number of small proteins that effectively attenuate the human innate immune response. Among these, the staphylococcal complement-inhibitor protein (SCIN) disrupts the function of the complement component 3 (C3) convertase that is initiated through either the classical or the alternative pathway and thereby prevents amplification of the complement response on the bacterial surface. Recent studies have shown that SCIN may affect the activities of the C3 convertase by binding in an equimolar fashion to C3b, which is itself an integral although non-enzymatic component of the convertase. In order to better understand the nature of the C3b-SCIN interaction, the hanging-drop vapor-diffusion technique was used to crystallize human C3b in the presence of a recombinant form of SCIN. These crystals diffracted synchrotron X-rays to approximately 6 A Bragg spacing and grew in a primitive tetragonal space group (P4(1)2(1)2 or P4(3)2(1)2; unit-cell parameters a = b = 128.03, c = 468.59 A). Cell-content analysis of these crystals was consistent with the presence of either two 1:1 complexes or a single 2:2 assembly in the asymmetric unit, both of which correspond to a solvent content of 51.9%. By making use of these crystals, solution of the C3b-SCIN structure should further our understanding of complement inhibition and immune evasion by this pathogen.
Asunto(s)
Proteínas Inactivadoras del Complemento C3b/química , Proteínas Inactivadoras del Complemento C3b/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Staphylococcus aureus/metabolismo , Complemento C3b/genética , Proteínas Inactivadoras del Complemento C3b/genética , Cristalización , Cristalografía por Rayos X , Humanos , Staphylococcus aureus/genéticaRESUMEN
The complement system consists of a series of soluble and cell-surface proteins that serve numerous roles in innate immunity, development, and homeostasis. Despite its many functions, the central event in the complement system is the proteolytic activation of the 185â¯kDa complement component 3 (C3) into its opsonin and anaphylatoxin fragments known as C3b (175â¯kDa) and C3a (10â¯kDa), respectively. The C3 protein is comprised of thirteen separate structural domains, several of which undergo extensive structural rearrangement upon activation to C3b. In addition to this, the C-terminal C345c domain found in C3, C3b, and the terminal degradation product, C3c (135â¯kDa), appears to adopt multiple conformations relative to the remainder of the molecule. To facilitate various structure/function studies, we designed two C3 analogs that could be activated to a C345c-less, C3c-like state following treatment with Tobacco Etch Virus (TEV) protease. We generated stably transfected Chinese Hamster Ovary (CHO) cell lines that secrete approximately 1.5â¯mg of the highest-expressing C3 analog per liter of conditioned culture medium. We purified this C3 analog by sequential immobilized metal ion affinity and size exclusion chromatographies, activated the protein by digestion with TEV protease, and purified the resulting C3c analog by a final size exclusion chromatography. The conformations and activities of our C3 and C3c analogs were assessed by measuring their binding profiles to known C3/b/c ligands by surface plasmon resonance. Together, this work demonstrates the feasibility of producing a C3 analog that can be site-specifically activated by an exogenous proteolytic enzyme.
Asunto(s)
Complemento C3 , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Cromatografía en Gel , Complemento C3/química , Complemento C3/farmacología , Cricetulus , Humanos , Dominios Proteicos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Resonancia por Plasmón de SuperficieRESUMEN
HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS) HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB) was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.
Asunto(s)
Linfocitos T CD4-Positivos/química , Núcleo Celular/química , Regulación Viral de la Expresión Génica , VIH-1/genética , ARN Viral/análisis , Síndrome de Inmunodeficiencia Adquirida/genética , Síndrome de Inmunodeficiencia Adquirida/fisiopatología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD4-Positivos/virología , Núcleo Celular/fisiología , Núcleo Celular/virología , Productos del Gen rev/análisis , Productos del Gen rev/genética , Productos del Gen rev/fisiología , Productos del Gen tat/análisis , Productos del Gen tat/genética , Productos del Gen tat/fisiología , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/fisiología , Proteína de Unión al Tracto de Polipirimidina/análisis , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/fisiología , Empalme del ARN , ARN Viral/genética , Latencia del Virus/fisiología , Replicación Viral/genética , Replicación Viral/fisiología , Productos del Gen rev del Virus de la Inmunodeficiencia Humana , Productos del Gen tat del Virus de la Inmunodeficiencia HumanaRESUMEN
Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle "tip complex" (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N-terminal half of IpaB were most likely to result in a loss of steady-state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild-type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C-terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post-secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.
Asunto(s)
Proteínas Bacterianas , Mutagénesis Insercional/métodos , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Células Cultivadas , Eritrocitos , Hemólisis , Ovinos , Sistemas de Secreción Tipo III , Difracción de Rayos XRESUMEN
The extracellular adherence protein (Eap) plays a crucial role in pathogenesis and survival of Staphylococcus aureus by inhibiting the classical and lectin pathways of complement. We have previously shown that Eap binds with nanomolar affinity to complement C4b and disrupts the initial interaction between C4b and C2, thereby inhibiting formation of the classical and lectin pathway C3 pro-convertase. Although an underlying mechanism has been identified, the structural basis for Eap binding to C4b is poorly understood. Here, we show that Eap domains 3 and 4 each contain a low-affinity, but saturable binding site for C4b. Taking advantage of the high lysine content of Eap, we used a zero-length crosslinking approach to map the Eap binding site to both the α'- and γ-chains of C4b. We also probed the C4b/Eap interface through a chemical footprinting approach involving lysine modification, proteolytic digestion, and mass spectrometry. This identified seven lysines in Eap that undergo changes in solvent exposure upon C4b binding. We found that simultaneous mutation of these lysines to either alanine or glutamate diminished C4b binding and complement inhibition by Eap. Together, our results provide insight into Eap recognition of C4b, and suggest that the repeating domains that comprise Eap are capable of multiple ligand-binding modes.
Asunto(s)
Proteínas Bacterianas/química , Complemento C4b/química , Lisina/química , Proteínas de Unión al ARN/química , Staphylococcus aureus/química , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carbodiimidas/química , Complemento C4b/genética , Complemento C4b/metabolismo , Vía Clásica del Complemento , Lectina de Unión a Manosa de la Vía del Complemento , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Expresión Génica , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Interacciones Huésped-Patógeno , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
The extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus is a multifunctional virulence factor capable of potent inhibition of complement component-3 (C3) activity in addition to its previously described fibrinogen-binding properties. A truncated recombinant form of Efb (Efb-C) that binds C3 has been overexpressed and purified and has been crystallized using the hanging-drop vapor-diffusion technique. Crystals of native Efb-C grew in the tetragonal space group P4(3) (unit-cell parameters a = b = 59.53, c = 46.63 A) with two molecules in the asymmetric unit and diffracted well beyond 1.25 A limiting Bragg spacing. To facilitate de novo phasing of the Efb-C crystals, two independent site-directed mutants were engineered in which either residue Ile112 or Val140 was replaced with methionine and crystals isomorphous to those of native Efb-C were reproduced using a seleno-L-methionine-labeled form of each mutant protein. Multiwavelength anomalous diffraction (MAD) data were collected on both mutants and analyzed for their phasing power toward solution and refinement of a high-resolution Efb-C crystal structure.
Asunto(s)
Proteínas Bacterianas/química , Complemento C3/antagonistas & inhibidores , Staphylococcus aureus/química , Proteínas Bacterianas/genética , Complemento C3/metabolismo , Cristalización/métodos , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína/genéticaRESUMEN
A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydrolases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as cell separation during late stages of division. Some of these proteins have been shown to cleave peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence of zebra fish; however, there are still significant knowledge gaps concerning the molecular function of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome sequence encodes five NlpC/P60 domain-containing proteins. We describe atomic resolution crystal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures, combined with functional assays to measure peptidoglycan cleavage activity, led to the observation that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Furthermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as efficiently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the catalytic cysteine-155 residue to a serine significantly diminished catalytic activity, but did not affect binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for NlpC/P60 domain-containing proteins than simply hydrolases.
Asunto(s)
Mycobacterium avium subsp. paratuberculosis/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Pared Celular , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Mycobacterium avium subsp. paratuberculosis/química , Dominios ProteicosRESUMEN
Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases, in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations in acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds (J. Biol. Chem.2015, 290, 23447). Based on the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II-like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the crosslinking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal possibly due to its extremely small solvent accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.
RESUMEN
The complement system plays a central role in a number of human inflammatory diseases, and there is a significant need for development of complement-directed therapies. The discovery of an arsenal of anti-complement proteins secreted by the pathogen Staphylococcus aureus brought with it the potential for harnessing the powerful inhibitory properties of these molecules. One such family of inhibitors, the SCINs, interact with a functional "hot-spot" on the surface of C3b. SCINs not only stabilize an inactive form of the alternative pathway (AP) C3 convertase (C3bBb), but also overlap the C3b binding site of complement factors B and H. Here we determined that a conserved Arg residue in SCINs is critical for function of full-length SCIN proteins. Despite this, we also found SCIN-specific differences in the contributions of other residues found at the C3b contact site, which suggested that a more diverse repertoire of residues might be able to recognize this region of C3b. To investigate this possibility, we conducted a phage display screen aimed at identifying SCIN-competitive 12-mer peptides. In total, seven unique sequences were identified and all exhibited direct C3b binding. A subset of these specifically inhibited the AP in assays of complement function. The mechanism of AP inhibition by these peptides was probed through surface plasmon resonance approaches, which revealed that six of the seven peptides disrupted C3bBb formation by interfering with factor B/C3b binding. To our knowledge this study has identified the first small molecules that retain inhibitory properties of larger staphylococcal immune evasion proteins.
Asunto(s)
Proteínas Bacterianas/metabolismo , Vía Alternativa del Complemento/efectos de los fármacos , Péptidos/farmacología , Staphylococcus aureus/metabolismo , Animales , Arginina/metabolismo , Unión Competitiva/efectos de los fármacos , C3 Convertasa de la Vía Alternativa del Complemento , Complemento C3b/metabolismo , Factor B del Complemento/metabolismo , Secuencia Conservada , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Biblioteca de Péptidos , Péptidos/química , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Conejos , Soluciones , Resonancia por Plasmón de SuperficieRESUMEN
The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that contains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne's disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were expressed and evaluated with sera from cattle with Johne's disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a distinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis.
Asunto(s)
Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/inmunología , Paratuberculosis/microbiología , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Monoclonales/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Lipoproteínas/genética , Lipoproteínas/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia MolecularRESUMEN
The human complement system plays an essential role in innate and adaptive immunity by marking and eliminating microbial intruders. Activation of complement on foreign surfaces results in proteolytic cleavage of complement component 3 (C3) into the potent opsonin C3b, which triggers a variety of immune responses and participates in a self-amplification loop mediated by a multi-protein assembly known as the C3 convertase. The human pathogen Staphylococcus aureus has evolved a sophisticated and potent complement evasion strategy, which is predicated upon an arsenal of potent inhibitory proteins. One of these, the staphylococcal complement inhibitor (SCIN), acts at the level of the C3 convertase (C3bBb) and impairs downstream complement function by trapping the convertase in a stable but inactive state. Previously, we have shown that SCIN binds C3b directly and competitively inhibits binding of human factor H and, to a lesser degree, that of factor B to C3b. Here, we report the co-crystal structures of SCIN bound to C3b and C3c at 7.5 and 3.5 A limiting resolution, respectively, and show that SCIN binds a critical functional area on C3b. Most significantly, the SCIN binding site sterically occludes the binding sites of both factor H and factor B. Our results give insight into SCIN binding to activated derivatives of C3, explain how SCIN can recognize C3b in the absence of other complement components, and provide a structural basis for the competitive C3b-binding properties of SCIN. In the future, this may suggest templates for the design of novel complement inhibitors based upon the SCIN structure.