Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 58(9): 4084-4101, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753701

RESUMEN

With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.


Asunto(s)
Ginsenósidos , Células-Madre Neurales , Enfermedades Neurodegenerativas , Humanos , Anciano , Galactosa/metabolismo , Galactosa/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Calidad de Vida , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
Exp Eye Res ; 229: 109416, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801237

RESUMEN

Retinal ischemia-reperfusion (I/R) injury is a common pathophysiological stress state connected to various diseases, including acute glaucoma, retinal vascular obstruction, and diabetic retinopathy. Recent studies have suggested that geranylgeranylacetone (GGA) could increase heat shock protein70 (HSP70) level and reduce retinal ganglion cells (RGCs) apoptosis in a rat retinal I/R model. However, the underlying mechanism remains unclear. Moreover, the injury caused by retinal I/R includes not only apoptosis but also autophagy and gliosis, and the effects of GGA on autophagy and gliosis have not been reported. Our study established a retinal I/R model by anterior chamber perfusion pressuring to 110 mmHg for 60 min, followed by 4 h of reperfusion. The levels of HSP70, apoptosis-related proteins, GFAP, LC3-II, and PI3K/AKT/mTOR signaling proteins were determined by western blotting and qPCR after treatment with GGA, HSP70 inhibitor quercetin (Q), PI3K inhibitor LY294002, and mTOR inhibitor rapamycin. Apoptosis was evaluated by TUNEL staining, meanwhile, HSP70 and LC3 were detected by immunofluorescence. Our results demonstrated that GGA-induced HSP70 expression significantly reduced gliosis, autophagosome accumulation, and apoptosis in retinal I/R injury, indicating that GGA exerted protective effects on retinal I/R injury. Moreover, the protective effects of GGA mechanistically relied on the activation of PI3K/AKT/mTOR signaling. In conclusion, GGA-induced HSP70 overexpression has protective effects on retinal I/R injury by activating PI3K/AKT/mTOR signaling.


Asunto(s)
Daño por Reperfusión , Enfermedades de la Retina , Animales , Ratas , Apoptosis , Gliosis , Respuesta al Choque Térmico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Enfermedades de la Retina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
3.
Acta Pharmacol Sin ; 44(2): 406-420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35906293

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/ß-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Cilios , Tubulina (Proteína)/metabolismo , Proteínas Hedgehog/metabolismo , Riñón/patología , Ratones Noqueados , Quistes/metabolismo , Quistes/patología , Canales Catiónicos TRPP/metabolismo , Células Epiteliales/metabolismo
4.
Metab Brain Dis ; 38(4): 1143-1153, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745250

RESUMEN

Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.


Asunto(s)
Glioma , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Poliaminas/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Urea/farmacología , Urea/metabolismo
5.
Adv Exp Med Biol ; 1398: 145-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717492

RESUMEN

In this chapter, we mainly discuss the expression and function of aquaporins (AQPs) expressed in digestive system. AQPs are highly conserved transmembrane protein responsible for water transport across cell membranes. AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5, and AQP8, and three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP10. In the digestive glands, especially the liver, we discuss four members of aquaporin subfamily: AQP1, AQP4, AQP5, and AQP8, three members of aquaglyceroporin subfamily: AQP7, AQP9, and AQP12. In digestive system, the abnormal expression of AQPs is closely related to the occurrence and development of a variety of diseases. AQP1 is involved in saliva secretion and fat digestion and is closely related to gastric cancer and chronic liver disease; AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP4 regulates gastric acid secretion and is associated with the development of gastric cancer; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP7 is the major aquaglyceroporin in pancreatic ß cells; AQP8 plays a role in pancreatic juice secretion and may be a potential target for the treatment of diarrhea; AQP9 plays considerable role in glycerol metabolism and hepatocellular carcinoma; Studies on the function of AQP10 and AQP12 are still limited. Further studies are necessary for specific locations and functions of AQPs in digestive system.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Acuaporinas/genética , Acuaporinas/metabolismo , Diarrea , Acuagliceroporinas/genética
6.
Microvasc Res ; 139: 104272, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699845

RESUMEN

Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor ß (PPARß) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARß in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARß and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARß agonist. Both GSK0660 (PPARß antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARß in high glucose-impaired endothelial function in rat aorta. PPARß-nitrative stress may hold potential in treating vascular complications from DM.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Angiopatías Diabéticas/metabolismo , Células Endoteliales/efectos de los fármacos , Glucosa/toxicidad , Hiperglucemia/metabolismo , Estrés Nitrosativo/efectos de los fármacos , PPAR-beta/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/fisiopatología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Hiperglucemia/genética , Hiperglucemia/patología , Hiperglucemia/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , PPAR-beta/genética , Ratas Sprague-Dawley , Transducción de Señal , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatación/efectos de los fármacos
7.
Arch Biochem Biophys ; 700: 108774, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33548212

RESUMEN

Homoharringtonine (HHT), an approved anti-leukemic alkaloid, has been reported effectively in many types of tumor cells. However, its effect on melanoma cells has not been investigated. And the anti-melanoma mechanism of HHT is still unknown. In this study, we detected the effects of HHT on two melanoma cell lines (A375 and B16F10) and on the A375 xenograft mouse model. HHT significantly inhibited the proliferation of melanoma cells as investigated by the CCK8 method, cell cloning assay, and EdU experiment. HHT induced A375 and B16F10 cells DNA damage, apoptosis, and G2/M cell cycle arrest as proved by TdT-mediated dUTP Nick-End Labeling (TUNEL) and flow cytometry assay. Additionally, the loss of mitochondrial membrane potential in HHT-treated cells were visualized by JC-1 fluorescent staining. For the molecule mechanism study, western blotting results indicated the protein expression levels of ATM, P53, p-P53, p-CHK2, γ-H2AX, PARP, cleaved-PARP, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Aurka, p-Aurka, Plk1, p-Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were regulated by HHT. And the relative mRNA expression level of Aurka, Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were ascertained by q-PCR assay. The results in vivo experiment showed that HHT can slow down the growth rate of tumors. At the same time, the protein expression levels in vivo were consistent with that in vitro. Collectively, our study provided evidence that HHT could be considered an effective anti-melanoma agent by inducing DNA damage, apoptosis, and cell cycle arrest.


Asunto(s)
Daño del ADN/efectos de los fármacos , ADN de Neoplasias/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Homoharringtonina/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Melanoma Experimental , Animales , Apoptosis , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Proteínas de Neoplasias/biosíntesis
8.
Anticancer Drugs ; 32(3): 314-322, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33394687

RESUMEN

Evodiamine (Evo), a quinazoline alkaloid and one of the most typical polycyclic heterocycles, is mainly isolated from Evodia rugulosa. Vasculogenic mimicry (VM) is a newly identified way of angiogenesis during tumor neovascularization, which is prevalent in a variety of highly invasive tumors. The purpose of this study was to investigate the effect and mechanism of Evo on VM in human colorectal cancer (CRC) cells. The number of VM structures was calculated by the three-dimensional culture of human CRC cells. Wound-healing was used to detect the migration of HCT116 cells. Gene expression was detected by reverse transcription-quantitative PCR assay. CD31/PAS staining was used to identify VM. Western blotting and immunofluorescence were used to detect protein levels. The results showed that Evo inhibited the migration of HCT116 cells, as well as the formation of VM. Furthermore, Evo reduced the expression of hypoxia-inducible factor 1-alpha (HIF-1α), VE-cadherin, VEGF, MMP2, and MMP9. In a model of subcutaneous xenotransplantation, Evo also inhibited tumor growth and VM formation. Our study demonstrates that Evo could inhibit VM in CRC cells HCT116 and reduce the expression of HIF-1α, VE-cadherin, VEGF, MMP2, and MMP9.


Asunto(s)
Neovascularización Patológica/tratamiento farmacológico , Quinazolinas/farmacología , Animales , Antígenos CD/efectos de los fármacos , Cadherinas/efectos de los fármacos , Movimiento Celular , Supervivencia Celular , Transición Epitelial-Mesenquimal , Femenino , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Ratones Endogámicos BALB C , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
9.
Acta Pharmacol Sin ; 42(10): 1703-1713, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33927358

RESUMEN

Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Fatiga Muscular/efectos de los fármacos , Triterpenos/uso terapéutico , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos BALB C , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología
10.
Ren Fail ; 43(1): 1479-1491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34723750

RESUMEN

BACKGROUND: End-stage renal disease (ESRD) is the final stage during the development of renal failure. Depression is the most common psychiatric disorder in patients with ESRD, which in turn aggravates the progression of renal failure, however, its underlying mechanism remains unclear. This study aimed to reveal the pathogenesis and to discover novel peripheral biomarkers for ESRD patients with depression through metabolomic analysis. METHODS: Ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used to explore changes of serum metabolites among healthy controls, ESRD patients with or without depression. The differential metabolites between groups were subjected to clustering analysis, pathway analysis, receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 57 significant serum differential metabolites were identified between ESRD patients with or without depression, which were involved in 19 metabolic pathways, such as energy metabolism, glycerolipid metabolism, and glutamate-centered metabolism. Moreover, the area under the ROC curve of gentisic acid, uric acid, 5-hydroxytryptamine, 2-phosphoglyceric acid, leucyl-phenylalanine, propenyl carnitine, naloxone, pregnenolone, 6-thioxanthene 5'-monophosphate, hydroxyl ansoprazole, zileuton O-glucuronide, cabergoline, PA(34:2), PG(36:1), probucol and their combination was greater than 0.90. CONCLUSIONS: Inflammation, oxidative stress and energy metabolism abnormalities, glycerolipid metabolism, and glutamate-centered metabolism are associated with the pathogenesis of ESRD with depression, which may be promising targets for therapy. Furthermore, the identified differential metabolites may serve as biomarkers for the diagnosis of ESRD patients with depression.


Asunto(s)
Depresión/complicaciones , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Metabolómica/métodos , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión/métodos , Depresión/sangre , Metabolismo Energético , Femenino , Humanos , Inflamación , Fallo Renal Crónico/psicología , Metabolismo de los Lípidos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Estrés Oxidativo , Curva ROC , Espectrometría de Masas en Tándem/métodos
11.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915902

RESUMEN

The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metformina/farmacología , Putrescina/biosíntesis , Urea/metabolismo , Animales , Biomarcadores , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Acta Pharmacol Sin ; 41(1): 65-72, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31213671

RESUMEN

Urea transporters (UTs) are transmembrane proteins selectively permeable to urea and play an important role in urine concentration. UT-knockout mice exhibit the urea-selective urine-concentrating defect, without affecting electrolyte balance, suggesting that UT-B inhibitors have the potential to be developed as novel diuretics. In this study, we characterized a novel compound 5-ethyl-2-methyl-3-amino-6-methylthieno[2,3-b]pyridine-2,5-dicarboxylate (CB-20) with UT inhibitory activity as novel diuretics with excellent pharmacological properties. This compound was discovered based on high-throughput virtual screening combined with the erythrocyte osmotic lysis assay. Selectivity of UT inhibitors was assayed using transwell chambers. Diuretic activity of the compound was examined in rats and mice using metabolic cages. Pharmacokinetic parameters were detected in rats using LC-MS/MS. Molecular docking was employed to predict the potential binding modes for the CB-20 with human UT-B. This compound dose-dependently inhibited UT-facilitated urea transport with IC50 values at low micromolar levels. It exhibited nearly equal inhibitory activity on both UT-A1 and UT-B. After subcutaneous administration of CB-20, the animals showed polyuria, without electrolyte imbalance and abnormal metabolism. CB-20 possessed a good absorption and rapid clearance in rat plasma. Administration of CB-20 for 5 days did not cause significant morphological abnormality in kidney or liver tissues of rats. Molecular docking showed that CB-20 was positioned near several residues in human UT-B, including Leu364, Val367, and so on. This study provides proof of evidence for the prominent diuretic activity of CB-20 by specifically inhibiting UTs. CB-20 or thienopyridine analogs may be developed as novel diuretics.


Asunto(s)
Diuréticos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Tienopiridinas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diuréticos/administración & dosificación , Diuréticos/química , Perros , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tienopiridinas/administración & dosificación , Tienopiridinas/química , Transportadores de Urea
13.
Acta Pharmacol Sin ; 41(5): 670-677, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31804606

RESUMEN

Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg-1 ·d-1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg-1 ·d-1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-ß/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-ß/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-ß/Smad and MAPK signaling pathways were confirmed in TGF-ß1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.


Asunto(s)
Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Triterpenos/farmacología , Obstrucción Ureteral/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intraperitoneales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triterpenos/administración & dosificación , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/cirugía
14.
Anticancer Drugs ; 30(6): 611-617, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30789361

RESUMEN

Colorectal cancer (CRC) is one of the most difficult cancers to cure. An important prognostic factor is metastasis, which precludes curative surgical resection. Recent evidences show that Evodiamine (EVO) exerts an inhibitory effect on cancer cell apoptosis, migration, and invasion. In this study, we investigated the effects of EVO on the metastasis of CRC cells in vitro and in vivo. In vitro, wound-healing and transwell assay showed that migration and invasion of HT-29 and HCT-116 CRC cells were inhibited significantly by EVO. Western blot and RT-PCR showed that EVO reduced the expression of matrix metalloproteinase-9 in a dose-dependent manner. In EVO-induced cells, the intracellular NAD+/NADH ratio was increased, the level of Sirt1 was increased, and acetyl-NF-κB P65 was decreased. This process was inhibited by nicotinamide, an inhibitor of Sirt1. In vivo, EVO reduced tumor metastasis markedly. These findings provide evidences that EVO suppresses the migration and invasion of CRC cells by inhibiting the acetyl-NF-κB p65 by Sirt1, resulting in suppression of metalloproteinase-9 expression in vitro and in vivo.


Asunto(s)
Movimiento Celular , Neoplasias Colorrectales/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Quinazolinas/farmacología , Sirtuina 1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Fosforilación , Procesamiento Proteico-Postraduccional , Sirtuina 1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Molecules ; 24(18)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491954

RESUMEN

Chronic kidney disease (CKD) is problem that has become one of the major issues affecting public health. Extensive clinical data suggests that the prevalence of hyperlipidemia in CKD patients is significantly higher than in the general population. Lipid metabolism disorders can damage the renal parenchyma and promote the occurrence of cardiovascular disease (CVD). Cyanate is a uremic toxin that has attracted widespread attention in recent years. Usually, 0.8% of the molar concentration of urea is converted into cyanate, while myeloperoxidase (MPO) catalyzes the oxidation of thiocyanate to produce cyanate at the site of inflammation during smoking, inflammation, or exposure to environmental pollution. One of the important physiological functions of cyanate is protein carbonylation, a non-enzymatic post-translational protein modification. Carbamylation reactions on proteins are capable of irreversibly changing protein structure and function, resulting in pathologic molecular and cellular responses. In addition, recent studies have shown that cyanate can directly damage vascular tissue by producing large amounts of reactive oxygen species (ROS). Oxidative stress leads to the disorder of liver lipid metabolism, which is also an important mechanism leading to cirrhosis and liver fibrosis. However, the influence of cyanate on liver has remained unclear. In this research, we explored the effects of cyanate on the oxidative stress injury and abnormal lipid metabolism in mice and HL-7702 cells. In results, cyanate induced hyperlipidemia and oxidative stress by influencing the content of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), catalase (CAT) in liver. Cyanate inhibited NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the phosphorylation of adenosine 5'monophosphate-activated protein kinase (AMPK), activated the mTOR pathway. Oxidative stress on the cells reduced significantly by treating with TBHQ, an antioxidant, which is also an activator of Nrf2. The activity of Nrf2 was rehabilitated and phosphorylation of mTOR decreased. In conclusion, cyanate could induce oxidative stress damage and lipid deposition by inhibiting Nrf2/HO-1 pathway, which was rescued by inhibitor of Nrf2.


Asunto(s)
Cianatos/farmacología , Hemo-Oxigenasa 1/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
16.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384473

RESUMEN

Hepatocellular cancer (HCC) is a lethal malignancy with poor prognosis and easy recurrence. There are few agents with minor toxic side effects that can be used for treatment of HCC. Evodiamine (Evo), one of the major bioactive components derived from fructus Evodiae, has long been shown to exert anti-hepatocellular carcinoma activity by suppressing activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). In addition, in the Nucleotide-Binding Oligomerization Domain 1 (NOD1) pathway, NOD1 could initiate NF-κB-dependent and MAPK-dependent gene transcription. Recent experimental studies reported that the NOD1 pathway was related to controlling development of various tumors. Here we hypothesize that Evo exerts anti-hepatocellular carcinoma activity by inhibiting NOD1 to suppress NF-κB and MAPK activation. Therefore, we proved the anti-hepatocellular carcinoma activity of Evo on HCC cells and detected the effect of Evo on the NOD1 pathway. We found that Evo significantly induced cell cycle arrest at the G2/M phase, upregulated P53 and Bcl-2 associated X proteins (Bax) proteins, and downregulated B-cell lymphoma-2 (Bcl-2), cyclinB1, and cdc2 proteins in HCC cells. In addition, Evo reduced levels of NOD1, p-P65, p-ERK, p-p38, and p-JNK, where the level of IκBα of HCC cells increased. Furthermore, NOD1 agonist γ-D-Glu-mDAP (IE-DAP) treatment weakened the effect of Evo on suppression of NF-κB and MAPK activation and cellular proliferation of HCC. In an in vivo subcutaneous xenograft model, Evo also exhibited excellent tumor inhibitory effects via the NOD1 signal pathway. Our results demonstrate that Evo could induce apoptosis remarkably and the inhibitory effect of Evo on HCC cells may be through suppressing the NOD1 signal pathway in vitro and in vivo.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Adv Exp Med Biol ; 969: 123-130, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28258570

RESUMEN

In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.


Asunto(s)
Acuaporina 1/metabolismo , Carcinoma Hepatocelular/metabolismo , Diarrea/metabolismo , Tracto Gastrointestinal/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neoplasias Hepáticas/metabolismo , Animales , Acuaporina 1/genética , Transporte Biológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Movimiento Celular , Proliferación Celular , Diarrea/genética , Diarrea/patología , Regulación de la Expresión Génica , Glicerol/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Urea/metabolismo , Agua/metabolismo
18.
Acta Pharmacol Sin ; 37(7): 973-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27238209

RESUMEN

AIM: Urea transporters (UT) are a family of transmembrane proteins that specifically transport urea. UT inhibitors exert diuretic activity without affecting electrolyte balance. The purpose of this study was to discover novel UT inhibitors and determine the inhibition mechanism. METHODS: The primary screening urea transporter B (UT-B) inhibitory activity was conducted in a collection of 10 000 diverse small molecules using mouse erythrocyte lysis assay. After discovering a hit with a core structure of 1-phenylamino-4-phenylphthalazin, the UT-B inhibitory activity of 160 analogs were examined with a stopped-flow light scattering assay and their structure-activity relationship (SAR) was analyzed. The inhibition mechanism was further investigated using in silico assays. RESULTS: A phenylphthalazine compound PU1424, chemically named 5-(4-((4-methoxyphenyl) amino) phthalazin-1-yl)-2-methylbenzene sulfonamide, showed potent UT-B inhibition activity, inhibited human and mouse UT-B-mediated urea transport with IC50 value of 0.02 and 0.69 µmol/L, respectively, and exerted 100% UT-B inhibition at higher concentrations. The compound PU1424 did not affect membrane urea transport in mouse erythrocytes lacking UT-B. Structure-activity analysis revealed that the analogs with methoxyl group at R4 and sulfonic amide at R2 position exhibited the highest potency inhibition activity on UT-B. Furthermore, in silico assays validated that the R4 and R2 positions of the analogs bound to the UT-B binding pocket and exerted inhibition activity on UT-B. CONCLUSION: The compound PU1424 is a novel inhibitor of both human and mouse UT-B with IC50 at submicromolar ranges. Its binding site is located at the So site of the UT-B structure.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Simulación del Acoplamiento Molecular , Ftalazinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , Animales , Eritrocitos/efectos de los fármacos , Humanos , Ratones , Relación Estructura-Actividad
19.
Subcell Biochem ; 73: 7-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25298336

RESUMEN

Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues. The metabolic process is altered in several conditions such as by diets, hormones, and diseases. Urea is then eliminated through fluids, especially urine. Blood urea nitrogen (BUN) has been utilized to evaluate renal function for decades. New roles for urea in the urinary system, circulation system, respiratory system, digestive system, nervous system, etc., were reported lately, which suggests clinical significance of urea.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Urea/metabolismo , Animales , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Humanos , Estructura Molecular , Urea/sangre , Urea/química
20.
Subcell Biochem ; 73: 179-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25298346

RESUMEN

Jk antigens, which were identified as urea transporter B (UT-B) in the plasma membrane of erythrocytes, and which determine the Kidd blood type in humans, are involved in transfusion medicine, and even in organ transplantation. The Jk(a-b-) blood type is a consequence of a silent Slc14A1 gene caused by various mutations related to lineage. In addition, the specific mutations related to hypertension and metabolic syndrome cannot be ignored. Genome-wide association studies established Slc14A1 as a related gene of bladder cancer and some genotypes are associated with higher morbidity. This chapter aims to introduce the clinical significance of urea transporters.


Asunto(s)
Eritrocitos/metabolismo , Sistema del Grupo Sanguíneo de Kidd/genética , Proteínas de Transporte de Membrana/genética , Mutación , Sustitución de Aminoácidos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo , Neoplasias de la Vejiga Urinaria/genética , Transportadores de Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA