Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chem Rec ; 24(1): e202300236, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991268

RESUMEN

Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.

2.
Soft Matter ; 18(20): 3981-3992, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35552585

RESUMEN

Herein, we report a robust approach for the selective covalent functionalization of graphene oxide (GO) with 4-hydroxybenzoic acid (HBA) for developing polymeric nanocomposites based on liquid crystalline polymers (LCPs). The functionalization of GO with HBA was confirmed by Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) spectroscopy. The surface morphology of GO and functionalized GO (FGO) was studied using field emission scanning electron microscopy (FE-SEM). Furthermore, the interactions between FGO and LCPs have been investigated by FT-IR spectroscopy, whereas dispersion of GO and FGO in the LCP matrix was analyzed by FE-SEM. The better dispersion of FGO can be attributed to the hydrogen bonding and π-π stacking interactions between FGO and LCPs. Our results showed that even the addition of 5 wt% FGO in the LCP matrix significantly enhances the tensile strength and storage modulus of the pristine LCPs by 84% and 78% respectively. Compared to neat LCPs, FGO incorporated composites also demonstrate an improvement in the melting temperature (Tm) by 11 °C and glass transition temperature (Tg) by 12 °C. Furthermore, thermogravimetric analysis (TGA) was performed to evaluate the thermal stability of the composite. The 5 and 50% decomposition temperature for the LCP/FGO nanocomposites (containing 5 wt% FGO) increased by 75 °C and 107 °C respectively.

3.
Soft Matter ; 18(37): 7112-7122, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36082826

RESUMEN

We report the effect of incorporating functionalized graphene oxide (terephthalic acid functionalized GO; GO-g-TPA) on the thermal and mechanical properties of Hytrel (HTL; a thermoplastic elastomeric polymer). Initially, the synthesis of GO-g-TPA was performed via chemical methods and subsequently characterized using various spectroscopic and imaging techniques. The melt mixing technique was executed in preparing the nanocomposites of HTL/GO and HTL/GO-g-TPA. An excellent GO dispersion was observed in the HTL polymeric matrix, which could be attributed to the significant effect of hydrogen bonding and π-π interaction between the HTL and GO-g-TPA. As a result of incorporating GO and GO-g-TPA into the HTL matrix, the overall mechanical and thermal properties of the nanocomposites were significantly improved. For the HTL/5 wt% GO-g-TPA nanocomposite, the tensile strength and storage modulus significantly increased by 61% and 224%, respectively. In addition, the melting temperature and crystalline temperature are increased by a notable 20 °C and 21 °C, respectively. Thus, the current study found that by improving the dispersion ability of the GO sheets, the properties of the HTL can be significantly enhanced and the prepared composite materials can be relevant for a wide range of applications including sports goods, hose jackets, wire and cable jackets, electronics, fluid power, sheeting belting seals, and footwear, etc.

4.
Soft Matter ; 19(1): 98-105, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472188

RESUMEN

N-doped graphene stabilized Cu(I)-catalyzed self-healing nanocomposites are developed. This study found the use of N-doped graphene as both a nanostructured material for enhancing mechanical and conductive properties and a catalyst promoter (a scaffold for catalytic copper(I) particles), helpful to trigger self-healing via "click chemistry". Due to an increase in electron density on nitrogen atom doping, including the coordination of N-doped rGO with Cu+ ions, nitrogen-doped graphene-supported copper particles demonstrate a higher reaction yield at room temperature without adding any external ligand/base. In this study, only one component (an azide moiety containing a healing agent) was encapsulated, whereas another component (an alkyne moiety containing a healing agent) was as such (without encapsulation) homogeneously dispersed in a matrix. Triggered capsule rupture then induces the contact of the healing agents with the N-doped graphene-based catalyst and the alkyne molecules dispersed in the matrix, inducing a "click"-reaction, allowing onsite damage to be repaired as determined by mechanical measurements entirely. Tensile measurements were also performed using molecular dynamics (MD) simulations to support the findings. Given the enormous importance of autonomic repair of materials damage, this concept here reports a trustworthy and reliable chemical system with a high level of robustness.

5.
Org Biomol Chem ; 19(48): 10601-10610, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34859806

RESUMEN

A two-pot synthesis of 5-aza-indoles has been developed from aqueous succinaldehyde and N-aryl propargylic-imines. This overall protocol involves: (i) the metal-free [3 + 2] annulation of aqueous succinaldehyde and N-aryl propargylic-imines to access 2-alkynyl-pyrrole-3-aldehydes and (ii) Ag-catalyzed 6-endo-dig-cyclization to obtain substituted 5-aza-indoles in the second pot. The 5-aza-indoles showed engaging photophysical activities, and the practicality of this pot-economic gram-scale synthesis has been demonstrated.

6.
Macromol Rapid Commun ; 41(1): e1900359, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631449

RESUMEN

The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.


Asunto(s)
Alquinos/química , Azidas/química , Cobre/química , Carbono/química , Catálisis , Reacción de Cicloadición , Ligandos , Nitrógeno/química , Fósforo/química , Polímeros/química
7.
Macromol Rapid Commun ; 37(21): 1715-1722, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27644037

RESUMEN

Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano- and microscaled fillers, or via new chemical concepts such as self-healing materials. A capsule-based self-healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene-based filler, the latter additionally acting as a catalyst for the self-healing reaction. The concept is based on "click"-based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a "reactive glue" at the cracked site. A capsule-based healing system via a graphene-based Cu2 O (TRGO-Cu2 O-filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room-temperature self-healing within 48 h is achieved, with the investigated specimen containing TRGO-Cu2 O demonstrating significantly faster self-healing compared to homogeneous (Cu(PPh3 )3 F, Cu(PPh3 )3 Br), and heterogeneous (Cu/C) copper(I) catalysts.


Asunto(s)
Química Clic , Grafito/química , Nanocompuestos/química , Cobre/química , Compuestos Organometálicos/química , Tamaño de la Partícula , Propiedades de Superficie
8.
Chemistry ; 21(30): 10763-70, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26089200

RESUMEN

Highly disperse copper nanoparticles immobilized on carbon nanomaterials (CNMs; graphene/carbon nanotubes) were prepared and used as a recyclable and reusable catalyst to achieve Cu(I) -catalyzed [3+2] cycloaddition click chemistry. Carbon nanomaterials with immobilized N-heterocyclic carbene (NHC)-Cu complexes prepared from an imidazolium-based carbene and Cu(I) show excellent stability including high efficiency at low catalyst loading. The catalytic performance evaluated in solution and in bulk shows that both types of Cu-CNMs can function as an effective recyclable catalysts (more than 10 cycles) for click reactions without decomposition and the use of external additives.


Asunto(s)
Carbono/química , Química Clic , Cobre/química , Reacción de Cicloadición , Nanoestructuras/química , Alquinos/química , Azidas/química , Catálisis , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Nanoestructuras/ultraestructura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Triazoles/química
9.
RSC Adv ; 13(6): 3910-3941, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36756545

RESUMEN

Sustainable development is a critical concern in this fast-paced technological world. Therefore, it is essential to employ renewable resources to move towards sustainable development goals (SDGs). The polyols attained from renewable resources, including lignin, chitosan, vegetable oils, cellulose, etc. and the polymers derived from them have attracted the attention of the majority of researchers, both in academia and industry. The development of bio-based polymers from vegetable oils start emerging with different properties to generate a value-added system. This review will give an impression to readers about how coatings generated from vegetable oils can find a way towards better protective properties against corrosion either by using fillers or by using molecular structure modifications in the system, thus covering a range of vegetable oil-based self-healing polymers and their application in anti-corrosion coatings.

10.
Heliyon ; 9(6): e17350, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37441386

RESUMEN

The recent trends of vitrimer studies enhance the thermoset material with superior properties, therefore, it is particularly important to address the critical scientific inquiries in this area using their research metrics. The reported vitrimer systems have been highly required for future real-time applications; however, the inquisitiveness of material exchange mechanisms extends the research studies further. Significantly, more scientific information's are required to achieve the evident prospective outcomes via these materials. This article highlights the trends and developments of the most relevant publications, authors, articles, countries, and keywords in the vitrimer research field over the past 10 years. The represented bibliometric survey would elevate the basic understanding of the current vitrimer research stats and also help follow the particular research community to learn and develop insight. To generate bibliometric networks, bibliometric data has obtained from Scopus and visualised in VOS-viewer; as an overview of that, the highest number of publications were from China, United States, France, United Kingdom, and Spain.

11.
Curr Drug Deliv ; 20(7): 943-950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35611774

RESUMEN

BACKGROUND: The combinatorial use of anticancer drugs, dual or multiple, with a specific nanocarrier is one of the most promising attempts in drug delivery. The current work reports potassium contained graphene oxide (K-GO) as a nanocarrier in the drug delivery system of two anticancer drugs, gefitinib (GEF) and camptothecin (CPT), simultaneously. METHODS: To characterize K-GO, K-GO-related single and combined drug systems, different techniques have been performed and studied using the following spectroscopic tools, such as Thermo Gravimetric Analysis (TGA 4000), UV-visible spectroscopy, Raman spectroscopy, and Transmission electron microscopy (TEM). The in vitro cytotoxicity tests of K-GO, single drug system, and the combined drug system were also performed in the human breast cancer MDA-MB-231 cells. RESULTS: The release profile of the dual drug conjugates grafted onto the surface of K-GO was found to be up to 38% in PBS solution over 72 hours. The percentage of MDA-MB-231 cell viability was about 18% when treated with K-GO-GEF-CPT combined system; for K-GO, K-GO-GEF, and K-GO-CPT, the cell viability was 79%, 31%, and 32%, respectively. CONCLUSION: We studied the loading, release, and delivery of two anticancer drugs onto the fluorescent nanocarrier. Features, such as superb aqueous solubility, excellent biocompatibility, richness in potassium, and fluorescent nature, which can monitor the delivery of drugs, make them a promising nanocarrier for single or multiple drug delivery. Furthermore, our novel findings revealed that the loading capacity and cytotoxicity of the combined drug-loaded system are superior to the capacity of the individual drug system for human breast cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Grafito , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/química , Gefitinib , Portadores de Fármacos/química
13.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458296

RESUMEN

Carbon fiber-reinforced polymer (CFRP) composites are used in a variety of applications such as aircraft, automobiles, body armors, and the sports sector owing to their ultra-strong and lightweight characteristics. However, the incorporation of an untreated pristine carbon fiber surface leads to a weak interfacial interaction with the polymeric matrix, thus triggering catastrophic failure of the composite material. Graphene oxide, a 2D-macromolecule consisting of several polar functional groups such as hydroxyl, carboxyl, and carbonyl on the basal planes and edges, tends to increase the surface area and has thus been applied between the fiber and matrix, helping to improve CFRP properties. Herein, we condense different routes of functionalization of GO nanosheets and their incorporation onto a fiber surface or in a carbon fiber-reinforced epoxy matrix, helping to improve the interfacial adhesion between the fiber and matrix, and thus allowing effective stress transfer and energy absorption. The improvement of the interfacial adhesion between the fiber and carbon fiber-reinforced epoxy matrix is due to the peculiar structure of GO nanoparticles composed of polar groups, especially on the edges of the nanosheets, able to provide strong interaction with the hosting cured epoxy matrix, and the "core" part similar to the structure of CFs, and hence able to establish strong π-π interactions with the reinforcing CFs. The article also covers the effect of functionalized graphene oxide incorporation on the mechanical, thermal, electrical, and viscoelastic properties of composite materials reinforced with carbon fibers.

14.
Polymers (Basel) ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36297916

RESUMEN

The aim to achieve sustainable development goals (SDG) and cut CO2-emission is forcing researchers to develop bio-based materials over conventional polymers. Since most of the established bio-based polymeric materials demonstrate prominent sustainability, however, performance, cost, and durability limit their utilization in real-time applications. Additionally, a sustainable circular bioeconomy (CE) ensures SDGs deliver material production, where it ceases the linear approach from production to waste. Simultaneously, sustainable circular bio-economy promoted materials should exhibit the prominent properties to involve and substitute conventional materials. These interceptions can be resolved through state-of-the-art bio-vitrimeric materials that display durability/mechanical properties such as thermosets and processability/malleability such as thermoplastics. This article emphasizes the current need for vitrimers based on bio-derived chemicals; as well as to summarize the developed bio-based vitrimers (including reprocessing, recycling and self-healing properties) and their requirements for a sustainable circular economy in future prospects.

15.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559744

RESUMEN

As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.

16.
RSC Adv ; 12(5): 2574-2588, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425302

RESUMEN

In this work, polymer grafted magnetic graphene oxide (GO-PVP-Fe3O4) was successfully synthesized for efficient delivery of anticancer drug. Firstly, GO was functionalized with the hydrophilic and biocompatible polymer polyvinylpyrrolidone (PVP) and then grafted with magnetic nanoparticles (Fe3O4) through an easy and effective chemical co-precipitation method. Quercetin (QSR) as an anticancer drug was loaded onto the surface of GO-PVP-Fe3O4 via non-covalent interactions. The drug loading capacity was as high as 1.69 mg mg-1 and the synthesized magnetic nanocarrier shows pH-responsive controlled release of QSR. The cellular cytotoxicity of the synthesized nanocarrier with and without drugs was investigated in human breast cancer MDA MB 231 cells and their effects compared on non-tumorigenic epithelial HEK 293T cells. These results reveal that the drug loaded GO-PVP-Fe3O4 nanohybrid was found to be more toxic than the free drug towards MDA MB 231 cells and exhibits biocompatibility towards HEK 293T cells. Overall, a smart drug delivery system including polymer grafted magnetic graphene oxide as a pH-responsive potential nanocarrier could be beneficial for targeted drug delivery, controlled by an external magnetic field as an advancement in chemotherapy against cancer.

17.
RSC Adv ; 12(50): 32569-32582, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36425695

RESUMEN

To achieve sustainable development goals, approaches towards the preparation of recyclable and healable polymeric materials is highly attractive. Self-healing polymers and thermosets based on bond-exchangeable dynamic covalent bonds, so called "vitrimers" could be a great effort in this direction. In order to match the industrial importance, enhancement of mechanical strength without sacrificing the bond exchange capability is a challenging issue, however, such concerns can be overcome through the developments of fiber-reinforced vitrimer composites. This article covers the outstanding features of fiber-reinforced vitrimer composites, including their reprocessing, recycling and self-healing properties, together with practical applications and future perspectives of this unique class of materials.

18.
Chemistry ; 17(40): 11092-101, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21882271

RESUMEN

Controlled functionalization of carbon nanotubes (CNTs) through the use of cycloaddition reactions is described. By employing various cycloaddition reactions, a wide range of molecules could be coupled onto CNTs without disruption of the structural integrity as well as with a statistical distribution of functional groups onto the surface of the CNTs. The cycloaddition reactions represent an effective and tailored approach for preparing CNT-based advanced hybrid materials that would be useful for a wide range of applications from nanobiotechnology to nanoelectronics.

19.
Nanotechnology ; 22(27): 275609, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21613687

RESUMEN

Core-shell nanowires having multiwalled carbon nanotubes (MWNT) as a core and polypyrrole (PPy) as a shell were synthesized using Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. According to transmission electron microscopy measurements, the uniform PPy layers of 10-20 nm in thickness were formed well on the MWNT's surface. In particular 'grafting from' click coupling was more effective in obtaining uniform and stable core-shell nanowires as well as in the reaction yield, compared to 'grafting to' click coupling. This is due to chemical bond formation between PPy and MWNT in equal intervals along the longitudinal direction of the MWNT, achieved by 'grafting from' click coupling. As a result, the core-shell nanowires were very stable even in the sonication of nanowires and showed an enhanced electrical conductivity of 80 S cm(-1), due to the synergetic interaction between MWNTs and PPy, which is higher than the conductivity of pure MWNTs and pure PPy. In addition, the core-shell nanowires could show better NO2 gas sensing properties compared to pure MWNTs and pure PPy as well as MWNT/PPy composites prepared by in situ polymerization. The synthesized core-shell nanowires would play an important role in preparing electrical and sensing devices.

20.
Polymers (Basel) ; 13(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926010

RESUMEN

A big step forward for composite application in the sector of structural materials is given by the use of Multi-Wall Carbon Nanotubes (MWCNTs) functionalized with hydrogen bonding moieties, such as barbiturate and thymine, to activate self-healing mechanisms and integrate additional functionalities. These materials with multiple healing properties at the same damaged site, imparted by hydrogen bonds, will also have the potential to improve material reliability, extend the service life, reduce replacement costs, and improve product safety. This revolutionary approach is obtained by integrating the non-covalent interactions coupled with the conventional covalent approach used to cross-link the polymer. The objective of this work is to characterize rubber-toughened supramolecular self-healing epoxy formulations based on unfunctionalized and functionalized MWCNTs using Tunneling Atomic Force Microscopy (TUNA). This advanced technique clearly shows the effect produced by the hydrogen bonding moieties acting as reversible healing elements by their simultaneous donor and acceptor character, and covalently linked to MWCNTs to originate self-healing nanocomposites. In particular, TUNA proved to be very effective for the morphology study of both the unfunctionalized and functionalized carbon nanotube-based conductive networks, thus providing useful insights aimed at understanding the influence of the intrinsic nature of the nanocharge on the final properties of the multifunctional composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA