Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 630(8016): 475-483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839958

RESUMEN

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Asunto(s)
Envejecimiento , Encéfalo , Senescencia Celular , Drosophila melanogaster , Metabolismo de los Lípidos , Mitocondrias , Neuroglía , Animales , Femenino , Humanos , Masculino , Envejecimiento/metabolismo , Envejecimiento/patología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Longevidad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Factor de Transcripción AP-1/metabolismo , Lípidos , Inflamación/metabolismo , Inflamación/patología
2.
Anal Chem ; 92(15): 10847-10855, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32639138

RESUMEN

Cardiolipin (CL) analysis demands high specificity, due to the extensive diversity of CL structures, and high sensitivity, due to their low relative abundance within the lipidome. While electrospray ionization mass spectrometry (ESI-MS) is the most widely used technology in lipidomics, the potential for multiple charging presents unique challenges for CL identification and quantification. Depending on the conditions, ESI-MS of lipid extracts in negative ion mode can give rise to cardiolipins ionized as both singly and doubly deprotonated anions. This signal degeneracy diminishes the signal-to-noise ratio, while in addition (for direct infusion), the dianion population falls within a m/z range already heavily congested with monoanions from more abundant glycerophospholipid subclasses. Herein, we describe a direct infusion strategy for CL profiling from total lipid extracts utilizing gas-phase proton-transfer ion/ion reactions. In this approach, lipid extracts are ionized by negative ion ESI generating both singly deprotonated phospholipids and doubly deprotonated CL anions. Charge reduction of the negative ion population by ion/ion reactions leads to an enhancement in singly deprotonated [CL - H]- species via proton transfer to the corresponding [CL - 2H]2-̅ dianions. To concentrate the [CL - H]- anion signal, multiple iterations of ion accumulation and proton-transfer ion/ion reaction can be performed prior to subsequent interrogation. Mass selection and collisional activation of the enriched population of [CL - H]- anions facilitates the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Demonstrated advantages of this new approach derive from the improved performance in complex mixture analysis affording detailed characterization of low abundant CLs directly from a total biological extract.


Asunto(s)
Cardiolipinas/análisis , Cardiolipinas/química , Gases/química , Protones , Escherichia coli/química , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular
3.
Anal Chem ; 92(1): 1219-1227, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31763816

RESUMEN

Shotgun lipidomics has recently gained popularity for lipid analysis. Conventionally, shotgun analysis of glycerophospholipids via direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides glycerophospholipid (GPL) class (i.e., headgroup composition) and fatty acyl composition. Reliant on low-energy collision-induced dissociation (CID), traditional ESI-MS/MS fails to define fatty acyl regiochemistry along the glycerol backbone or carbon-carbon double bond position(s) in unsaturated fatty acyl substituents. Therefore, isomeric GPLs are often unresolved, representing a significant challenge for shotgun-MS approaches. We developed a top-down shotgun-MS method utilizing gas-phase ion/ion charge inversion chemistry that provides near-complete GPL structural identification. First, in negative ion mode, CID of mass-selected GPL anions generates fatty acyl carboxylate anions via fragmentation of ester bonds linking the fatty acyl substituents at the sn-1 and sn-2 positions of the glycerol backbone. Product anions, including fatty acyl carboxylate ions, were then derivatized in the mass spectrometer via an ion/ion charge inversion reaction with tris-phenanthroline magnesium dications. Subsequent CID of charge-inverted fatty acyl complex cations yielded isomer-specific product ion spectra that permit (i) unambiguous assignment of carbon-carbon double bond position(s) and (ii) relative quantitation of isomeric fatty acyl substituents. The outlined strategy was applied to the analysis of targeted GPLs extracted from human plasma, including several proposed plasma biomarkers. A single experiment thus facilitates assignment of the GPL headgroup, fatty acyl composition, carbon-carbon double bond position(s) in unsaturated fatty acyl chains, and, in some cases, fatty acyl sn-position and relative abundances for isomeric fatty acyl substituents. Ultimately, this MSn platform paired with ion/ion chemistry permitted identification of major, and some minor, isomeric contributors that are unresolved using conventional ESI-MS/MS.


Asunto(s)
Glicerofosfolípidos/química , Gases/química , Iones/química , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
4.
Anal Chem ; 91(14): 9032-9040, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31199126

RESUMEN

Representing the most fundamental lipid class, fatty acids (FA) play vital biological roles serving as energy sources, cellular signaling molecules, and key architectural components of complex lipids. Direct infusion electrospray ionization spectrometry, also known as shotgun lipidomics, has emerged as a rapid and powerful toolbox for lipid analysis. While shotgun lipidomics can be a sensitive approach to FA detection, the diverse molecular structure of FA presents challenges for unambiguous identification and the relative quantification of isomeric contributors. In particular, pinpointing double bond position(s) in unsaturated FA and determining the relative contribution of double bond isomers has limited the application of the shotgun approach. Recently, we reported the use of gas-phase ion/ion reactions to facilitate the identification of FA. Briefly, singly deprotonated FA anions undergo charge inversion when reacted in the gas phase with tris-phenanthroline magnesium dications by forming [FA - H + MgPhen]+ complex ions. These charge-inverted FA complex cations fragment upon ion-trap collision-induced dissociation (CID) to generate product ion spectra unique to individual FA isomers. Herein, we report the development of a mass spectral library comprised of [FA - H + MgPhen]+ product ion spectra. The developed FA library permits confident FA identification, including polyunsaturated FA isomers. Furthermore, we demonstrate the ability to determine relative contributions of isomeric FA using multiple linear regression analysis paired with gas-phase ion/ion reactions. We successfully applied the presented method to generate a FA profile for bovine liver phospholipidome based entirely on gas-phase chemistries.


Asunto(s)
Ácidos Grasos/análisis , Gases/análisis , Lipidómica/métodos , Animales , Bovinos , Complejos de Coordinación/química , Ácidos Grasos/química , Gases/química , Hígado/química , Magnesio/química , Fenantrolinas/química , Fosfolípidos/análisis , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray
5.
Anal Bioanal Chem ; 411(19): 4739-4749, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30613841

RESUMEN

Shotgun lipid analysis based on electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is increasingly used in lipidomic studies. One challenge for the shotgun approach is the discrimination of lipid isomers and isobars. Gas-phase charge inversion via ion/ion reactions has been used as an effective method to identify multiple isomeric/isobaric components in a single MS peak by exploiting the distinctive functionality of different lipid classes. In doing so, fatty acyl chain information can be obtained without recourse to condensed-phase separations or derivatization. This method alone, however, cannot provide carbon-carbon double bond (C=C) location information from fatty acyl chains. Herein, we provide an enhanced method pairing photochemical derivatization of C=C via the Paternò-Büchi reaction with charge inversion ion/ion tandem mass spectrometry. This method was able to provide gas-phase separation of phosphatidylcholines and phosphatidylethanolamines, the fatty acyl compositions, and the C=C location within each fatty acyl chain. We have successfully applied this method to bovine liver lipid extracts and identified 40 molecular species of glycerophospholipids with detailed structural information including head group, fatty acyl composition, and C=C location. Graphical Abstract ᅟ.


Asunto(s)
Fosfolípidos/química , Procesos Fotoquímicos , Animales , Bovinos , Iones , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
6.
Anal Chem ; 90(21): 12861-12869, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30260210

RESUMEN

Fatty acids (FA) play vital biological roles as energy sources, signaling molecules and key building blocks of complex lipids in cell membranes. Modifications to FA structure and composition are associated with the onset and progression of a number of chronic diseases. Consequently, the sensitive detection and unambiguous structure elucidation of FA is integral to the advancement of biomedical sciences. Recent advances in FA analysis have taken advantage of wet chemical derivatization to enhance detection and drive unique fragmentation in tandem mass spectrometry protocols. Here, we significantly further this approach through demonstrating gas-phase charge inversion of singly deprotonated FA ions, [M - H]-, using doubly charged tris-phenanthroline alkaline earth metal complexes, [Cat(Phen)3]2+ (Cat = Mg2+, Ca2+, Sr2+, or Ba2+). Metal cationized FA, [M - H + Cat]+ are obtained after the gas-phase ion/ion reaction. Low-energy collision-induced dissociation (CID) of the [M - H + Cat]+ cations facilitates double bond localization for a variety of monounsaturated and polyunsaturated FAs. Ultimately, detailed characterization presented unambiguous distinction among FA double bond positional isomers, such as n-3 and n-6 isomers. The method was successfully used to identify the FA profile of corn oil, including double bond localization for unsaturated FAs present.


Asunto(s)
Complejos de Coordinación/química , Ácidos Grasos Insaturados/análisis , Gases/química , Metales Alcalinotérreos/química , Fenantrolinas/química , Aceite de Maíz/análisis , Aceite de Maíz/química , Ácidos Grasos Insaturados/química , Ligandos , Estructura Molecular
7.
ACS Meas Sci Au ; 4(3): 233-246, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38910862

RESUMEN

Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.

8.
ArXiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562448

RESUMEN

Lipidomics generates large data that makes manual annotation and interpretation challenging. Lipid chemical and structural diversity with structural isomers further complicates annotation. Although, several commercial and open-source software for targeted lipid identification exists, it lacks automated method generation workflows and integration with statistical and bioinformatics tools. We have developed the Comprehensive Lipidomic Automated Workflow (CLAW) platform with integrated workflow for parsing, detailed statistical analysis and lipid annotations based on custom multiple reaction monitoring (MRM) precursor and product ion pair transitions. CLAW contains several modules including identification of carbon-carbon double bond position(s) in unsaturated lipids when combined with ozone electrospray ionization (OzESI)-MRM methodology. To demonstrate the utility of the automated workflow in CLAW, large-scale lipidomics data was collected with traditional and OzESI-MRM profiling on biological and non-biological samples. Specifically, a total of 1497 transitions organized into 10 MRM-based mass spectrometry methods were used to profile lipid droplets isolated from different brain regions of 18-24 month-old Alzheimer's disease mice and age-matched wild-type controls. Additionally, triacyclglycerols (TGs) profiles with carbon-carbon double bond specificity were generated from canola oil samples using OzESI-MRM profiling. We also developed an integrated language user interface with large language models using artificially intelligent (AI) agents that permits users to interact with the CLAW platform using a chatbot terminal to perform statistical and bioinformatic analyses. We envision CLAW pipeline to be used in high-throughput lipid structural identification tasks aiding users to generate automated lipidomics workflows ranging from data acquisition to AI agent-based bioinformatic analysis.

9.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558977

RESUMEN

Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.

10.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333071

RESUMEN

Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aß), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent upon age and disease progression and is more prominent in the hippocampus in mice and humans. Despite variability in LD load between microglia from male versus female animals and between cells from different brain regions, LD-laden microglia exhibited a deficit in Aß phagocytosis. Unbiased lipidomic analysis identified a substantial decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TAGs) as the key metabolic transition underlying LD formation. We demonstrate that DGAT2, a key enzyme for the conversion of FFAs to TAGs, promotes microglial LD formation, is increased in microglia from 5xFAD and human AD brains, and that inhibiting DGAT2 improved microglial uptake of Aß. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.

11.
J Am Soc Mass Spectrom ; 33(11): 2156-2164, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36218280

RESUMEN

While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.


Asunto(s)
Ácidos Grasos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Ácidos Grasos/análisis , Lípidos/análisis
12.
J Am Soc Mass Spectrom ; 32(2): 455-464, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370110

RESUMEN

Cardiolipins (CLs) are comprised of two phosphatic acid moieties bound to a central glycerol backbone and are substituted with four acyl chains. Consequently, a vast number of distinct CL structures are possible in different biological contexts, representing a significant analytical challenge. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) has become a widely used approach for the detection, characterization, and quantitation of complex lipids, including CLs. Central to this approach is fragmentation of the [CLs - H]- or [CL - 2H]2- anions by collision-induced dissociation (CID). Product ions in the resulting tandem mass spectra confirm the CL subclass assignment and reveal the numbers of carbons and degrees of unsaturation in each of the acyl chains. Conventional CID, however, affords limited structural elucidation of the fatty acyl chains, failing to discriminate isomers arising from different site(s) of unsaturation or cyclopropanation and potentially obscuring their metabolic origins. Here, we report the application of charge inversion ion/ion chemistry in the gas phase to enhance the structural elucidation of CLs. Briefly, CID of [CL - H]2- anions generated via negative ion ESI allowed for the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Next, gas-phase derivatization of the resulting CL product ions, including fatty acyl carboxylate anions, was effected with gas-phase ion/ion charge inversion reactions with tris-phenanthroline magnesium reagent dications. Subsequent isolation and activation of the charge-inverted fatty acyl complex cations permitted the localization of both carbon-carbon double bond and cyclopropane motifs within each of the four acyl chains of CLs. This approach was applied to the de novo elucidation of unknown CLs in a biological extract revealing distinct isomeric populations and regiochemical relationships between double bonds and carbocyles.

13.
Chem Phys Lipids ; 232: 104970, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32890498

RESUMEN

Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.


Asunto(s)
Lípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
14.
J Am Soc Mass Spectrom ; 31(5): 1093-1103, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251588

RESUMEN

Ether lipids represent a unique subclass of glycerophospholipid (GPL) that possesses a 1-O-alkyl (i.e., plasmanyl subclass) or a 1-O-alk-1'-enyl (i.e., plasmenyl subclass) group linked at the sn-1 position of the glycerol backbone. As changes in ether GPL composition and abundance are associated with numerous human pathologies, analytical strategies capable of providing high-level structural detail are desirable. While mass spectrometry (MS) has emerged as a prominent tool for lipid structural elucidation in biological extracts, distinctions between the various isomeric forms of ether-linked GPLs have remained a significant challenge for tandem MS, principally due to similarities in the conventional tandem mass spectra obtained from the two ether-linked subclasses. To distinguish plasmanyl and plasmenyl GPLs, a multistage (i.e., MSn where n = 3 or 4) mass spectrometric approach reliant on low-energy collision-induced dissociation (CID) is required. While this method facilitates assignment of the sn-1 bond type (i.e., 1-O-alkyl versus 1-O-alk-1'-enyl), a composite distribution of isomers is left unresolved, as carbon-carbon double-bond (C=C) positions cannot be localized in the sn-2 fatty acyl substituent. In this study, we combine a systematic MSn approach with two unique gas-phase charge inversion ion/ion chemistries to elucidate ether GPL structures with high-level detail. Ultimately, we assign both the sn-1 bond type and sites of unsaturation in the sn-2 fatty acyl substituent using an entirely gas-phase MS-based workflow. Application of this workflow to human blood plasma extract permitted isomeric resolution and in-depth structural identification of major and, in some cases, minor isomeric contributors to ether GPLs that have been previously unresolved when examined via conventional methods.

15.
Anal Chim Acta ; 1129: 31-39, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32891388

RESUMEN

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous bioactive lipids with anti-diabetic and anti-inflammatory effects. Identification of FAHFAs is challenging due to both the relatively low abundance of these metabolites in most biological samples and the significant structural diversity arising from the co-occurrence of numerous regioisomers. Ultimately, development of sensitive analytical techniques that enable rapid and unambiguous identification of FAHFAs is integral to understanding their diverse physiological functions in health and disease. While a battery of mass spectrometry (MS) based methods for complex lipid analysis has been developed, FAHFA identification presents specific challenges to conventional approaches. Notably, while the MS2 product ion spectra of [FAHFA - H]¯ anions afford the assignment of fatty acid (FA) and hydroxy fatty acid (HFA) constituents, FAHFA regioisomers are usually indistinguishable by this approach. Here, we report the development of a novel MS-based technique employing charge inversion ion/ion reactions with tris-phenanthroline magnesium complex dications, Mg(Phen)32+, to selectively and efficiently derivatize [FAHFA - H]¯ anions in the gas phase, yielding fixed-charge cations. Subsequent activation of [FAHFA - H + MgPhen2]+ cations yield product ions that facilitate the assignment of FA and HFA constituents, pinpoints unsaturation sites within the FA moiety, and elucidates ester linkage regiochemistry. Collectively, the presented approach represents a rapid, entirely gas-phase method for near-complete FAHFA structural elucidation and confident isomer discrimination without the requirement for authentic FAHFA standards.


Asunto(s)
Ésteres , Ácidos Grasos , Iones , Lípidos , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA