Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Stem Cells ; 33(12): 3581-95, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26178867

RESUMEN

The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging.


Asunto(s)
Desarrollo de Músculos , Músculos Faríngeos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Ratones , Ratones Mutantes , Músculos Faríngeos/citología , Células Satélite del Músculo Esquelético/citología
2.
iScience ; 27(2): 108925, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38323009

RESUMEN

We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.

3.
bioRxiv ; 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37333164

RESUMEN

We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.

4.
Oncogene ; 41(11): 1647-1656, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35094009

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and phenocopies a muscle precursor that fails to undergo terminal differentiation. The alveolar subtype (ARMS) has the poorest prognosis and represents the greatest unmet medical need for RMS. Emerging evidence supports the role of epigenetic dysregulation in RMS. Here we show that SMARCA4/BRG1, an ATP-dependent chromatin remodeling enzyme of the SWI/SNF complex, is prominently expressed in primary tumors from ARMS patients and cell cultures. Our validation studies for a CRISPR screen of 400 epigenetic targets identified SMARCA4 as a unique factor for long-term (but not short-term) tumor cell survival in ARMS. A SMARCA4/SMARCA2 protein degrader (ACBI-1) demonstrated similar long-term tumor cell dependence in vitro and in vivo. These results credential SMARCA4 as a tumor cell dependency factor and a therapeutic target in ARMS.


Asunto(s)
Neoplasias , Rabdomiosarcoma Alveolar , Rabdomiosarcoma Embrionario , Biología , Niño , ADN Helicasas/genética , Humanos , Proteínas Nucleares/genética , Rabdomiosarcoma Alveolar/genética , Factores de Transcripción/genética
6.
Sci Rep ; 7(1): 17955, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263370

RESUMEN

We compared the cranial base of newborn Pax7-deficient and wildtype mice using a computational shape modeling technology called particle-based modeling (PBM). We found systematic differences in the morphology of the basiooccipital bone, including a broadening of the basioccipital bone and an antero-inferior inflection of its posterior edge in the Pax7-deficient mice. We show that the Pax7 cell lineage contributes to the basioccipital bone and that the location of the Pax7 lineage correlates with the morphology most effected by Pax7 deficiency. Our results suggest that the Pax7-deficient mouse may be a suitable model for investigating the genetic control of the location and orientation of the foramen magnum, and changes in the breadth of the basioccipital.


Asunto(s)
Hueso Occipital/anatomía & histología , Factor de Transcripción PAX7/deficiencia , Animales , Animales Recién Nacidos/anatomía & histología , Heterocigoto , Homocigoto , Ratones , Ratones Endogámicos C57BL , Hueso Occipital/diagnóstico por imagen , Hueso Occipital/embriología , Hueso Occipital/crecimiento & desarrollo , Factor de Transcripción PAX7/fisiología , Base del Cráneo/anatomía & histología , Base del Cráneo/diagnóstico por imagen , Microtomografía por Rayos X
7.
PLoS One ; 12(8): e0183161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817624

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma affecting children and is often diagnosed with concurrent metastases. Unfortunately, few effective therapies have been discovered that improve the long-term survival rate for children with metastatic disease. Here we determined effectiveness of targeting the receptor tyrosine kinase, EphB4, in both alveolar and embryonal RMS either directly through the inhibitory antibody, VasG3, or indirectly by blocking both forward and reverse signaling of EphB4 binding to EphrinB2, cognate ligand of EphB4. Clinically, EphB4 expression in eRMS was correlated with longer survival. Experimentally, inhibition of EphB4 with VasG3 in both aRMS and eRMS orthotopic xenograft and allograft models failed to alter tumor progression. Inhibition of EphB4 forward signaling using soluble EphB4 protein fused with murine serum albumin failed to affect eRMS model tumor progression, but did moderately slow progression in murine aRMS. We conclude that inhibition of EphB4 signaling with these agents is not a viable monotherapy for rhabdomyosarcoma.


Asunto(s)
Efrina-B2/metabolismo , Receptor EphB4/metabolismo , Rabdomiosarcoma/terapia , Animales , Línea Celular , Humanos , Ratones , Ratones Transgénicos , Pronóstico , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Transducción de Señal
8.
Front Aging Neurosci ; 7: 190, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500547

RESUMEN

The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA