Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Phytopathology ; 113(8): 1537-1547, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37147741

RESUMEN

Blumeria graminis f. sp. tritici (Bgt) is an obligate biotrophic fungal pathogen responsible for powdery mildew in bread wheat (Triticum aestivum). Upon Bgt infection, the wheat plant activates basal defense mechanisms, namely PAMP-triggered immunity, in the leaves during the first few days. Understanding this early stage of quantitative resistance is crucial for developing new breeding tools and evaluating plant resistance inducers for sustainable agricultural practices. In this sense, we used a combination of transcriptomic and metabolomic approaches to analyze the early steps of the interaction between Bgt and the moderately susceptible wheat cultivar Pakito. Bgt infection resulted in an increasing expression of genes encoding pathogenesis-related (PR) proteins (PR1, PR4, PR5, and PR8) known to target the pathogen, during the first 48 h postinoculation. Moreover, RT-qPCR and metabolomic analyses pointed out the importance of the phenylpropanoid pathway in quantitative resistance against Bgt. Among metabolites linked to this pathway, hydroxycinnamic acid amides containing agmatine and putrescine as amine components accumulated from the second to the fourth day after inoculation. This suggests their involvement in quantitative resistance via cross-linking processes in cell walls for reinforcement, which is supported by the up-regulation of PAL (phenylalanine ammonia-lyase), PR15 (oxalate oxidase) and POX (peroxidase) after inoculation. Finally, pipecolic acid, which is considered a signal involved in systemic acquired resistance, accumulated after inoculation. These new insights lead to a better understanding of basal defense in wheat leaves after Bgt infection.

2.
Plant Dis ; 106(5): 1408-1418, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34978870

RESUMEN

The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product 2 days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42 and 45%, respectively. Vacciplant exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. Ultrahigh-performance liquid chromatography-mass spectrometry analysis indicated limited changes in leaf metabolome after product application in both noninoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.


Asunto(s)
Antifúngicos , Triticum , Antifúngicos/farmacología , Ascomicetos , Glucanos , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
3.
Molecules ; 27(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235207

RESUMEN

Plant protection is mainly based on the application of synthetic pesticides to limit yield losses resulting from diseases. However, the use of more eco-friendly strategies for sustainable plant protection has become a necessity that could contribute to controlling pathogens through a direct antimicrobial effect and/or an induction of plant resistance. Three different families of natural or bioinspired compounds originated from bacterial or fungal strains have been evaluated to protect wheat against powdery mildew, caused by the biotrophic Blumeria graminis f.sp. tritici (Bgt). Thus, three bio-inspired mono-rhamnolipids (smRLs), three cyclic lipopeptides (CLPs, mycosubtilin (M), fengycin (F), surfactin (S)) applied individually and in mixtures (M + F and M + F + S), as well as a chitosan oligosaccharide (COS) BioA187 were tested against Bgt, in planta and in vitro. Only the three smRLs (Rh-Eth-C12, Rh-Est-C12 and Rh-Succ-C12), the two CLP mixtures and the BioA187 led to a partial protection of wheat against Bgt. The higher inhibitor effects on the germination of Bgt spores in vitro were observed from smRLs Rh-Eth-C12 and Rh-Succ-C12, mycosubtilin and the two CLP mixtures. Taking together, these results revealed that such molecules could constitute promising tools for a more eco-friendly agriculture.


Asunto(s)
Antiinfecciosos , Ascomicetos , Quitosano , Plaguicidas , Antiinfecciosos/farmacología , Quitosano/farmacología , Resistencia a la Enfermedad , Lipopéptidos/farmacología , Oligosacáridos/farmacología , Péptidos Cíclicos/farmacología , Plaguicidas/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Esporas Fúngicas , Triticum/microbiología
4.
Plant Dis ; 105(4): 780-786, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32830594

RESUMEN

Plant resistance inducers are among the most promising alternatives to develop sustainable crop protection. Here, we examined the ability of saccharin, a metabolite derived from probenazole, to protect wheat against Zymoseptoria tritici, the most frequently occurring and damaging foliar pathogen on this crop. The experiments were performed in the greenhouse by treating seedlings of the wheat cultivar 'Alixan' with 15 mM of saccharin 2 days before challenge inoculation with the Z. tritici pathogenic strain T02596. Foliar application of saccharin resulted in 77% lower disease severity than in nontreated control plants. In vitro and in planta assays showed that saccharin did not exhibit any direct antifungal effect on spore germination or hyphal growth. Molecular investigations from 2 to 7 days posttreatment (dpt) revealed that saccharin treatment upregulates the expression of genes encoding for lipoxygenase (LOX) at all sampled time points and pathogenesis-related protein 1 (PR1) at 7 dpt, in both noninfectious and infectious contexts, as well as peroxidase (POX2) in noninfectious conditions. However, saccharin did not induce significant change in the expression of PAL gene encoding for phenylalanine ammonia-lyase. Our findings report for the first time the potential of saccharin to confer protection in wheat against Z. tritici through an elicitation and priming of LOX and PR gene-related defense pathways. Additional investigations would provide a better deciphering of defense mechanisms activated by this molecule in wheat against Z. tritici.


Asunto(s)
Sacarina , Triticum , Ascomicetos , Mecanismos de Defensa , Enfermedades de las Plantas
5.
Molecules ; 26(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374771

RESUMEN

The hemibiotrophic fungus Zymoseptoria tritici, responsible for Septoria tritici blotch, is currently the most devastating foliar disease on wheat crops worldwide. Here, we explored, for the first time, the ability of rhamnolipids (RLs) to control this pathogen, using a total of 19 RLs, including a natural RL mixture produced by Pseudomonas aeruginosa and 18 bioinspired RLs synthesized using green chemistry, as well as two related compounds (lauric acid and dodecanol). These compounds were assessed for in vitro antifungal effect, in planta defence elicitation (peroxidase and catalase enzyme activities), and protection efficacy on the wheat-Z. tritici pathosystem. Interestingly, a structure-activity relationship analysis revealed that synthetic RLs with a 12 carbon fatty acid tail were the most effective for all examined biological activities. This highlights the importance of the C12 chain in the bioactivity of RLs, likely by acting on the plasma membranes of both wheat and Z. tritici cells. The efficacy of the most active compound Rh-Est-C12 was 20-fold lower in planta than in vitro; an optimization of the formulation is thus required to increase its effectiveness. No Z. tritici strain-dependent activity was scored for Rh-Est-C12 that exhibited similar antifungal activity levels towards strains differing in their resistance patterns to demethylation inhibitor fungicides, including multi-drug resistance strains. This study reports new insights into the use of bio-inspired RLs to control Z. tritici.


Asunto(s)
Ascomicetos/efectos de los fármacos , Glucolípidos/química , Glucolípidos/farmacología , Plaguicidas/farmacología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/efectos de los fármacos , Triticum/efectos de los fármacos , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Triticum/microbiología
6.
J Sci Food Agric ; 99(4): 1780-1786, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30226928

RESUMEN

BACKGROUND: To promote sustainable agriculture and healthy food, research that contributes towards a new generation of eco-friendly phytosanitary compounds is increasingly encouraged. The plant hormone salicylic acid (SA) is known for its ability to induce resistance in plants against a wide range of pathogens, whereas pyroglutamic acid (PGA), a constrained analogue of γ-aminobutyric acid, has never been studied in the context of plant protection. RESULTS: The present study investigated for the first time the protection efficacy of SA and PGA and five new conjugated derivatives against Zymoseptoria tritici, the main pathogen in wheat crops. SA and four derivatives showed significant disease severity reductions in planta (up to 49%). In vitro assays revealed that some molecules, including SA, displayed a small direct antifungal activity, whereas others, such as PGA, showed no effect. This finding suggests that, especially for molecules without any direct activity, the mode of action relies mainly on the induction of plant resistance. CONCLUSION: Further investigations are needed to identify the defence pathways involved in plant resistance mechanisms elicited or primed by the molecules. The manufacture of these products was easily achieved on a scale of tens of grams of raw materials, and is easily scalable. The synthetic pathway is simple, short and inexpensive. For all of these reasons, the production of the target molecules is attractive for producers, whereas the prospect of a generation of non-polluting compounds with lasting efficiency against Z. tritici in wheat comes at a key moment for the sustainability of agriculture. © 2018 Society of Chemical Industry.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Ácido Pirrolidona Carboxílico/inmunología , Ácido Salicílico/inmunología , Triticum/inmunología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Ácido Pirrolidona Carboxílico/química , Ácido Salicílico/química , Triticum/microbiología
7.
Phytopathology ; 104(3): 293-305, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24073639

RESUMEN

Powdery mildew would be one of the most damaging wheat diseases without the extensive use of conventional fungicides. Some of the alternative control strategies currently emerging are based on the use of resistance inducers. The disacharride trehalose (TR) is classically described as an inducer of defenses in plants to abiotic stress. In this work, the elicitor or priming effect of TR was investigated in wheat both before and during a compatible wheat-powdery mildew interaction through molecular, biochemical, and cytological approaches. In noninoculated conditions, TR elicited the expression of genes encoding chitinase (chi, chi1, and chi4 precursor), pathogenesis-related protein 1, as well as oxalate oxidase (oxo). Moreover, lipid metabolism was shown to be altered by TR spraying via the upregulation of lipoxygenase (lox) and lipid-transfer protein (ltp)-encoding gene expression. On the other hand, the protection conferred by TR to wheat against powdery mildew is associated with the induction of two specific defense markers. Indeed, in infectious conditions following TR spraying, upregulations of chi4 precursor and lox gene expression as well as an induction of the LOX activity were observed. These results are also discussed with regard to the impact of TR on the fungal infectious process, which was shown to be stopped at the appressorial germ tube stage. Our findings strongly suggest that TR is a true inducer of wheat defense and resistance, at least toward powdery mildew.


Asunto(s)
Ascomicetos/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Trehalosa/farmacología , Triticum/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Quitinasas/genética , Quitinasas/metabolismo , Interacciones Huésped-Patógeno , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Esporas Fúngicas , Triticum/genética , Triticum/inmunología , Triticum/microbiología , Regulación hacia Arriba/efectos de los fármacos
8.
Sci Rep ; 13(1): 90, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596821

RESUMEN

The current worldwide context promoting agroecology and green agriculture require the discovery of new ecofriendly and sustainable plant protection tools. Plant resistance inducers, called also elicitors, are one of the most promising alternatives fitting with such requirements. We produced here a set of 30 molecules from pyroglutamic acid, bio-sourced from sugar beet byproducts, and examined for their biological activity on the major agro-economically pathosystem wheat-Zymoseptoria tritici. Foliar application of the molecules provided significant protection rates (up to 63% disease severity reduction) for 16 among them. Structure-activity relationship analysis highlighted the importance of all chemical groups of the pharmacophore in the bioactivity of the molecules. Further investigations using in vitro and in planta antifungal bioassays as well as plant molecular biomarkers revealed that the activity of the molecules did not rely on direct biocide activity towards the pathogen, but rather on the activation of plant defense mechanisms dependent on lipoxygenase, phenylalanine ammonia-lyase, peroxidase, and pathogenesis-related protein pathways. This study reports a new family of bio-sourced resistance inducers and provides new insights into the valorization of agro-resources to develop the sustainable agriculture of tomorrow.


Asunto(s)
Beta vulgaris , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Verduras , Azúcares
9.
Plant Physiol Biochem ; 184: 14-25, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617771

RESUMEN

Ulvan is a water-soluble sulfated heteropolysaccharide extracted from the cell walls of the green seaweeds Ulva spp. This polysaccharide is known to induce resistance and protect plants against a broad range of plant pathogenic fungi, such as Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew in wheat. We aimed to study the defense mechanisms induced by ulvan against Bgt in susceptible wheat by investigating the defense-related gene expression, enzymes activity, accumulation of phenolic compounds and hydrogen peroxide (H2O2), as well as the development of Bgt infection structures in vitro and in planta. Symptoms were reduced by 42% in ulvan-treated plants. In vitro, ulvan did not inhibit conidial germination of Bgt but in planta, increased the appressorial germ tubes without haustorium. Ulvan increased the presence of fluorescent papillae and accumulation of H2O2 at the penetration sites of Bgt, as well as the content of phenolic compounds. POX, PAL and LOX activities were stimulated in ulvan-treated plants during the first 48 h after inoculation. However, few of defense-related genes studied were differentially expressed in infected plants after ulvan treatment. By contrast, in non-infected conditions, ulvan up-regulated the expression of genes involved in phenylpropanoid metabolism, i.e. PAL, CHS, COMT, ANS and FLS, genes encoding pathogenesis-related proteins, i.e. PR1, PR9, PR15, and LOX during the first 96 h after treatment. This study provides new insights about the multiple ulvan effects on wheat defense responses, and especially the elicitation of the phenylpropanoid pathway leading to phenolic compounds accumulation, which could be involved in cell wall reinforcement.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Erysiphe , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polisacáridos/metabolismo , Triticum/metabolismo
10.
Front Plant Sci ; 13: 878272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720601

RESUMEN

Rhamnolipids (RLs), glycolipids biosynthesized by the Pseudomonas and Burkholderia genera, are known to display various activities against a wide range of pathogens. Most previous studies on RLs focused on their direct antimicrobial activity, while only a few reports described the mechanisms by which RLs induce resistance against phytopathogens and the related fitness cost on plant physiology. Here, we combined transcriptomic and metabolomic approaches to unravel the mechanisms underlying RL-induced resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici, a major pathogen of this crop. Investigations were carried out by treating wheat plants with a bioinspired synthetic mono-RL with a 12-carbon fatty acid tail, dodecanoyl α/ß-L-rhamnopyranoside (Rh-Est-C12), under both infectious and non-infectious conditions to examine its potential wheat defense-eliciting and priming bioactivities. Whereas, Rh-Est-C12 conferred to wheat a significant protection against Z. tritici (41% disease severity reduction), only a slight effect of this RL on wheat leaf gene expression and metabolite accumulation was observed. A subset of 24 differentially expressed genes (DEGs) and 11 differentially accumulated metabolites (DAMs) was scored in elicitation modalities 2, 5, and 15 days post-treatment (dpt), and 25 DEGs and 17 DAMs were recorded in priming modalities 5 and 15 dpt. Most changes were down-regulations, and only a few DEGs and DAMs associated with resistance to pathogens were identified. Nevertheless, a transient early regulation in gene expression was highlighted at 2 dpt (e.g., genes involved in signaling, transcription, translation, cell-wall structure, and function), suggesting a perception of the RL by the plant upon treatment. Further in vitro and in planta bioassays showed that Rh-Est-C12 displays a significant direct antimicrobial activity toward Z. tritici. Taken together, our results suggest that Rh-Est-C12 confers protection to wheat against Z. tritici through direct antifungal activity and, to a lesser extent, by induction of plant defenses without causing major alterations in plant metabolism. This study provides new insights into the modes of action of RLs on the wheat-Z. tritici pathosystem and highlights the potential interest in Rh-Est-C12, a low-fitness cost molecule, to control this pathogen.

11.
Front Plant Sci ; 13: 1074447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777540

RESUMEN

Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.

12.
Front Plant Sci ; 12: 703712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552606

RESUMEN

This study aimed to examine the ability of ulvan, a water-soluble polysaccharide from the green seaweed Ulva fasciata, to provide protection and induce resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici. Matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis indicated that ulvan is mainly composed of unsaturated monosaccharides (rhamnose, rhamnose-3-sulfate, and xylose) and numerous uronic acid residues. In the greenhouse, foliar application of ulvan at 10 mg.ml-1 2 days before fungal inoculation reduced disease severity and pycnidium density by 45 and 50%, respectively. Ulvan did not exhibit any direct antifungal activity toward Z. tritici, neither in vitro nor in planta. However, ulvan treatment significantly reduced substomatal colonization and pycnidium formation within the mesophyll of treated leaves. Molecular assays revealed that ulvan spraying elicits, but does not prime, the expression of genes involved in several wheat defense pathways, including pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase), reactive oxygen species metabolism (oxalate oxidase), and the octadecanoid pathway (lipoxygenase and allene oxide synthase), while no upregulation was recorded for gene markers of the phenylpropanoid pathway (phenylalanine ammonia-lyase and chalcone synthase). Interestingly, the quantification of 83 metabolites from major chemical families using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in both non-infectious and infectious conditions showed no substantial changes in wheat metabolome upon ulvan treatment, suggesting a low metabolic cost associated with ulvan-induced resistance. Our findings provide evidence that ulvan confers protection and triggers defense mechanisms in wheat against Z. tritici without major modification of the plant physiology.

13.
Phytopathology ; 100(12): 1352-63, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20684658

RESUMEN

In wheat, little is known about disease resistance inducers and, more specifically, about the biological activities from those derived from endogenous elicitors, such as oligogalacturonides (OGAs). Therefore, we tested the ability of two fractions of OGAs, with polymerization degrees (DPs) of 2-25, to induce resistance to Blumeria graminis f. sp. tritici and defense responses in wheat. One fraction was unacetylated (OGAs-Ac) whereas the second one was 30% chemically acetylated (OGAs+Ac). Infection level was reduced to 57 and 58% relative to controls when OGAs-Ac and OGAs+Ac, respectively, were sprayed 48 h before inoculation. Activities of various defense-related enzymes were then assayed in noninoculated wheat leaves infiltrated with OGAs. Oxalate oxidase, peroxidase, and lipoxygenase were responsive to both OGAs-Ac and OGAs+Ac, which suggests involvement of reactive oxygen species and oxilipins in OGAs-mediated responses in wheat. In inoculated leaves, both fractions induced a similar increase in H2O2 accumulation at the site of fungal penetration. However, only OGAs+Ac led to an increase in papilla-associated fluorescence and to a reduction of formed fungal haustoria. Our work provides the first evidence for elicitation and protection effects of preventive treatments with OGAs in wheat and for new properties of acetylated OGAs.


Asunto(s)
Oligosacáridos/metabolismo , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Acetilación , Botrytis/patogenicidad , Hongos/patogenicidad , Germinación , Oligosacáridos/química , Oligosacáridos/uso terapéutico , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Triticum/fisiología
14.
Environ Sci Pollut Res Int ; 25(30): 29822-29833, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28634804

RESUMEN

Innovation toward ecofriendly plant protection products compatible with sustainable agriculture and healthy food is today strongly encouraged. Here, we assessed the biocontrol activity of three cyclic lipopeptides from Bacillus subtilis (mycosubtilin, M; surfactin, S; fengycin, F) and two mixtures (M + S and M + S + F) on wheat against Zymoseptoria tritici, the main pathogen on this crop. Foliar application of these biomolecules at a 100-mg L-1 concentration on the wheat cultivars Dinosor and Alixan, 2 days before fungal inoculation, provided significant reductions of disease severity. The best protection levels were recorded with the M-containing formulations (up to 82% disease reduction with M + S on Dinosor), while S and F treatments resulted in lower but significant disease reductions. In vitro and in planta investigations revealed that M-based formulations inhibit fungal growth, with half-maximal inhibitory concentrations of 1.4 mg L-1 for both M and M + S and 4.5 mg L-1 for M + S + F, thus revealing that the observed efficacy of these products may rely mainly on antifungal property. By contrast, S and F had no direct activity on the pathogen, hence suggesting that these lipopeptides act on wheat against Z. tritici as resistance inducers rather than as biofungicides. This study highlighted the efficacy of several lipopeptides from B. subtilis to biocontrol Z. tritici through likely distinct and biomolecule-dependent modes of action.


Asunto(s)
Ascomicetos/efectos de los fármacos , Bacillus subtilis/metabolismo , Agentes de Control Biológico/farmacología , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Enfermedades de las Plantas/prevención & control , Triticum/microbiología , Ascomicetos/crecimiento & desarrollo
15.
Phytochemistry ; 68(8): 1156-64, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17399750

RESUMEN

Prophylactic efficacies of Iodus 40 and salicylic acid (SA) against wheat powdery mildew caused by Blumeria graminis f. sp. tritici have been shown and compared with those of heptanoyl salicylic acid (HSA) and trehalose. Plantlets treated once exhibited 55%, 50%, 95%, and 38% protection levels, respectively. Two sprayings increased these levels up to 60%, 65%, 100%, and 60%, respectively. Biological effects of these resistance inducers on reactive oxygen species (ROS) metabolism and lipid peroxidation were also investigated. We found clear differences in the extent and the type of induced responses, with HSA exhibiting both the most numerous and the highest effects. HSA and SA induced a 5.5-fold increase of whole cell DAB staining due to hydrogen peroxide accumulation, whereas Iodus 40 and trehalose increased staining intensity at the penetration sites only. However, these effects were not correlated with any modification of catalase (CAT), oxalate oxidase (OXO) or lipoxygenase (LOX) activities, except for HSA which decreased CAT in non-inoculated conditions and increased LOX in infectious conditions. HSA also induced an increase in the rate of lipid peroxidation, whereas Iodus 40 induced a decrease. The effects of the inducers on germinating conidia and wheat epidermal cells responding to fungal penetration were also investigated. Papilla-linked autofluorescence was affected by SA and Iodus 40 whereas germination was slightly altered by Iodus 40. The newly described protective efficacies and the partial, distinct and non-overlapping activities of these inducers on the wheat/powdery mildew interaction are discussed.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Polisacáridos/farmacología , Salicilatos/farmacología , Ácido Salicílico/farmacología , Trehalosa/farmacología , Triticum/microbiología , Ascomicetos/citología , Ascomicetos/fisiología , Catalasa/metabolismo , Germinación/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Inmunidad Innata/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lipooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo
16.
Funct Plant Biol ; 44(4): 443-454, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32480577

RESUMEN

To develop a more sustainable agriculture using alternative control strategies, mechanisms involved in the biocontrol ability of the arbuscular mycorrhizal fungus Funneliformis mosseae to protect wheat against the foliar biotrophic pathogen Blumeria graminis f. sp. tritici were investigated under controlled conditions. B. graminis infection on wheat leaves was reduced by 78% in mycorrhizal plants compared with non-mycorrhizal ones (control). Wheat roots inoculated with F. mosseae revealed a systemic resistance in leaves to B. graminis, after a 6-week co-culture. Accordingly, this resistance was associated with a significant reduction of B. graminis haustorium formation in epidermal leaf cells of mycorrhizal wheat and an accumulation of phenolic compounds and H2O2 at B. graminis penetration sites. Moreover, gene expression analysis demonstrated upregulation of genes encoding for several defence markers, such as peroxidase, phenylalanine ammonia lyase, chitinase 1 and nonexpressor of pathogenesis-related proteins 1 in mycorrhizal wheat only in the absence of the pathogen. This study showed that protection of wheat obtained against B. graminis in response to mycorrhizal inoculation by F. mosseae could be interpreted as a mycorrhiza-induced resistance (MIR). Our findings also suggest that MIR-associated mechanisms impaired the B. graminis development process and corresponded to a systemic elicitation of plant defences rather than a primed state in wheat leaves.

17.
Phytopathology ; 96(11): 1278-86, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18943966

RESUMEN

ABSTRACT The prophylactic efficiency of Milsana against powdery mildew was evaluated on wheat (Triticum aestivum). A single short spraying on 10-day-old plantlets reduced the infection level by 85% and two long sprayings led to the total restriction of the disease. Although microscopic studies showed that Milsana treatments enhance hydrogen peroxide accumulation at the fungal penetration site, biochemical analysis did not allow us to correlate this accumulation with the activation of several enzyme activities involved in active oxygen species (AOS) metabolism. Only lipoxygenase activity, which is involved in both AOS metabolism and lipid peroxidation, showed a 26 to 32% increase 48-h posttreatment in leaves infiltrated with Milsana. This weak effect of Milsana on wheat lipid metabolism was confirmed at the lipid peroxidation level, which surprisingly, was shown to decrease in treated plants. In order to explain the high efficacy of Milsana, the fungistatic effect on conidia germination was also examined. In planta, we showed that a Milsana treatment resulted in a higher proportion of abnormally long appressorial germ tubes, whereas in vitro, it dramatically inhibited fungal conidia germination. The partial activity of Milsana in terms of defense response induction in the wheat/powdery mildew pathosystem and its newly described direct fungistatic activity are discussed.

18.
Funct Plant Biol ; 43(6): 512-522, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480481

RESUMEN

Activators of plant defence responses against pathogens are a potential alternative to fungicides, and the well-known resistance inducer salicylic acid (SA) protects wheat (Triticum aestivum L.) against powdery mildew. The aim of our work was to investigate through biochemical and molecular approaches whether lipid metabolism alteration could be considered as a characteristic feature of induced resistance in wheat upon SA infiltration. Expression levels of lox, PI-PLC2 and ltp genes encoding for a lipoxygenase (LOX), a phospholipase C2 and a lipid-transfer protein, respectively, were investigated. Increase of phosphatidic acid (PA) content 48h after SA infiltration in wheat leaves, upregulation of PI-PLC2 gene expression and increased diacylglycerol content were recorded, indicating the involvement of the PLC pathway in the PA synthesis. The wheat octadecanoid pathway was shown to be highly responsive to SA infiltration through simultaneous increases in lox gene expression and LOX activity, as well as a reduction in the content of linolenic acid. Changes in several FA contents and increases of the ltp gene expression were also recorded during the latest hours after SA infiltration. The status of lipid metabolism, as well as the connections between its components as markers of SA-induced resistance in wheat, are discussed.

19.
J Plant Physiol ; 170(18): 1620-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23880093

RESUMEN

Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.


Asunto(s)
Resistencia a la Enfermedad/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Salicilatos/farmacología , Ácido Salicílico/farmacología , Triticum/inmunología , Triticum/metabolismo , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Metabolismo de los Lípidos/genética , Lipooxigenasa/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Triticum/enzimología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA