Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 326(Pt A): 116683, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36370610

RESUMEN

Water stress is a current environmental menace mainly driven by over exploitation of aquifers, which is triggering poor water quality with high concentration of minerals in extracted groundwater. Particularly, silica is widespread in natural water supplies due to weathering processes of silicates occurring in contact with water, light, air, and other factors. However, due to groundwater over extraction the concentration of silica has increased during the last years in aquifer reservoirs from Aguascalientes State (México). In this context, it is very important to note that the removal of silica compounds from water is challenging and different methods can be used to avoid embedding problems in different industries. In the present work, the removal of reactive silica from synthetic solutions as well as from real wastewaters from an industrial anodizing process was studied using adsorption and chemical precipitation methods. Twelve commercial materials of different nature were used for adsorption tests, while seven precipitant agents were applied in the precipitation experiments. Adsorption tests were performed in batch systems with constant stirring at 30 °C and at different pH values (7 and 9). Precipitation experiments were carried out in batch systems and the best conditions for silica removal were found using an L9 orthogonal array of the Taguchi method employing molar ratio, pH of wastewater, stirring time and temperature as experimental factors. Adsorption results showed that Ferrolox (Iron (III) hydroxide-base adsorbent) was the most efficient sorbent for reactive silica removal from synthetic solutions and the anodizing wastewater. Also, the reactive silica adsorption was higher at pH 9 as compared to that measured at pH 7 and the adsorbed quantity at pH 9 was 16.22 and 11.25 mg/g for the synthetic solution and anodizing wastewater, respectively. According to molecular simulation, the main interaction between Ferrolox and silica species was related to the formation of hydroxo-complexes and to the interaction of Fe with oxygen of silica species. Additionally, magnesium chloride was the best precipitating reagent for reactive silica achieving up to 87% removal. According to ANOVA analysis of Taguchi method, pH was the most influential factor during the precipitation of reactive silica with a variance value of 81.42, while values lower than 3 were obtained for the rest of parameters. Overall, the present work is reporting for the first time the removal of reactive silica from anodizing wastewaters with promising results that can be implemented at full scale for water reclamation, which may significantly contribute to manage water reservoir in the region sustainably.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Aguas Residuales/análisis , Purificación del Agua/métodos , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
2.
Int J Biol Macromol ; 169: 75-84, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338526

RESUMEN

In this research, the adsorption of three synthetic dyes dissolved in an aqueous solution on chitosan cryogel beads (Q-C-EGDE) was compared. The effect of the pH of the solution on the adsorption capacity of each dyes was analyzed. Furthermore, the kinetics and adsorption isotherms were compared, at temperatures of 283.15 K, 303.15 K and 323.15 K, and the kinetic and adsorption equilibrium data were fitted to three mathematical models, respectively. The biosorbent was characterized by scanning electron microscopy (SEM), the nitrogen physisorption BET method and Fourier transform infrared spectroscopy (FTIR). The characterization results show that the cryogel is composed of low-surface, macroporous, porous grooved walls. The functional groups that took part in the adsorption were mainly amino groups (NH3+). When comparing the adsorption capacities, it was found that the dyes adsorb in the following order Blue 1 > Red 2 > Yellow 5 reaching capacities from 1600 mg/L to 850 mg/L. The results of the adsorption and mathematical modelling suggest that the process is regulated mainly by physisorption and is largely limited by mass transfer mechanisms within the cryogel, where the electrostatic charges present affect adsorption. The latter was corroborated by the Monte Carlo simulation.


Asunto(s)
Quitosano/química , Colorantes/química , Criogeles/química , Adsorción/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
3.
J Agric Food Chem ; 63(19): 4699-707, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25938374

RESUMEN

Micro- and nanotechnology are tools being used strongly in the area of food technology. The electrospray technique is booming because of its importance in developing micro- and nanoparticles containing an active ingredient as bioactive compounds, enhancing molecules of flavors, odors, and packaging coatings, and developing polymers that are obtained from food (proteins, carbohydrates), as chitosan, alginate, gelatin, agar, starch, or gluten. The electrospray technique compared to conventional techniques such as nanoprecipitation, emulsion-diffusion, double-emulsification, and layer by layer provides greater advantages to develop micro- and nanoparticles because it is simple, low cost, uses a low amount of solvents, and products are obtained in one step. This technique could also be applied in the agrifood sector for the preparation of controlled and/or prolonged release systems of fertilizer or agrochemicals, for which more research must be conducted.


Asunto(s)
Tecnología de Alimentos/métodos , Nanopartículas/química , Nanotecnología/métodos , Tecnología de Alimentos/instrumentación , Nanotecnología/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA