Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 6872-6880, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683656

RESUMEN

The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nanopartículas , Polímeros , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Humanos , Polímeros/química , Nanopartículas/química , Animales , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , Células HEK293 , Ratones , Guanidinas/química
2.
Small ; : e2311702, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456371

RESUMEN

The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.

3.
J Nanobiotechnology ; 22(1): 192, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637848

RESUMEN

Androgen deprivation therapy (ADT) is a crucial and effective strategy for prostate cancer, while systemic administration may cause profound side effects on normal tissues. More importantly, the ADT can easily lead to resistance by involving the activation of NF-κB signaling pathway and high infiltration of M2 macrophages in tumor microenvironment (TME). Herein, we developed a biomimetic nanotherapeutic platform by deriving cell membrane nanovesicles from cancer cells and probiotics to yield the hybrid cellular nanovesicles (hNVs), loading flutamide (Flu) into the resulting hNVs, and finally modifying the hNVs@Flu with Epigallocatechin-3-gallate (EGCG). In this nanotherapeutic platform, the hNVs significantly improved the accumulation of hNVs@Flu-EGCG in tumor sites and reprogramed immunosuppressive M2 macrophages into antitumorigenic M1 macrophages, the Flu acted on androgen receptors and inhibited tumor proliferation, and the EGCG promoted apoptosis of prostate cancer cells by inhibiting the NF-κB pathway, thus synergistically stimulating the antitumor immunity and reducing the side effects and resistance of ADT. In a prostate cancer mouse model, the hNVs@Flu-EGCG significantly extended the lifespan of mice with tumors and led to an 81.78% reduction in tumor growth compared with the untreated group. Overall, the hNVs@Flu-EGCG are safe, modifiable, and effective, thus offering a promising platform for effective therapeutics of prostate cancer.


Asunto(s)
FN-kappa B , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , FN-kappa B/metabolismo , Andrógenos/uso terapéutico , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Inmunoterapia/métodos , , Línea Celular Tumoral , Microambiente Tumoral
4.
J Nanobiotechnology ; 22(1): 135, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553735

RESUMEN

The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ganglios Linfáticos , Humanos , Metástasis Linfática/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología
5.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609922

RESUMEN

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Fotoquimioterapia , Biomimética , Linfocitos T CD8-positivos , Decitabina/farmacología , Terapia Fototérmica , Neoplasias/tratamiento farmacológico
6.
Angew Chem Int Ed Engl ; : e202404889, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977426

RESUMEN

Immune checkpoint blockade targeting the CD47/SIRPα axis represents an alluring avenue for cancer immunotherapy. However, the compromised efficacy and safety concerns in vivo of conventional anti-CD47 antibodies impede their wide clinical applications. Here we introduced a single type of high-mannose glycans into the nanobodies against CD47 (HM-nCD47) and subsequently displayed HM-nCD47 on cellular vesicles (CVs) for enhanced cancer immunotherapy. In this platform, the CVs significantly improved the circulation time of HM-nCD47-CVs, the nCD47 enabled the blockade of the CD47/SIRPα axis, and the HM enhanced recognition of mannose-binding lectin, all synergistically activating the macrophage-mediated antitumor immunity. In both subcutaneous and metastatic murine tumor models, the HM-nCD47-CVs possessed significantly extended half-lives and increased accumulation at the tumor site, resulting in a remarkable macrophage-dependent inhibition of tumor growth, a transcriptomic remodeling of the immune response, and an increase in survival time. By integrating the chemical biology toolbox with cell membrane nanotechnology, the HM-nCD47-CVs represent a new immunotherapeutic platform for cancer and other diseases.

7.
EMBO Rep ; 22(2): e50613, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345425

RESUMEN

One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS-deficient P. aeruginosa but does not affect the survival of ExoS-containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP-ribosyltransferase domain. Inhibition of mTOR is caused by ExoS-mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.


Asunto(s)
ADP Ribosa Transferasas , Toxinas Bacterianas , Pseudomonas aeruginosa , ADP Ribosa Transferasas/genética , Animales , Autofagia , Ratones , Serina-Treonina Quinasas TOR/genética
8.
J Immunol ; 207(2): 661-670, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193605

RESUMEN

Inflammation contributes to the pathogenesis and morbidity of wide spectrum of human diseases. The inflammatory response must be actively controlled to prevent bystander damage to tissues. Yet, the mechanisms controlling excessive inflammatory responses are poorly understood. NLRP3 inflammasome plays an important role in innate immune response to cellular infection or stress. Its activation must be tightly regulated because uncontrolled inflammasome activation is associated with a number of human diseases. p38 MAPK signaling plays an essential role in the regulation of inflammation. The role of p38 MAPK in inflammatory response associated with the expression of proinflammatory molecules is known. However, the anti-inflammatory functions of p38 MAPK are largely unknown. In this study, we show that pharmacologic inhibition or genetic deficiency of p38 MAPK leads to hyperactivation of NLRP3 inflammasome, resulting in enhanced Caspase 1 activation and IL-1ß and IL-18 production. The deficiency of p38 MAPK activity induced an increase of cytosolic Ca2+ and excessive mitochondrial Ca2+ uptake, leading to exacerbation of mitochondrial damage, which was associated with hyperactivation of NLRP3 inflammasome. In addition, mice with deficiency of p38 MAPK in granulocytes had evidence of in vivo hyperactivation of NLRP3 inflammasome and were more susceptible to LPS-induced sepsis compared with wild-type mice. Our results suggest that p38 MAPK negatively regulates NLRP3 inflammasome through control of Ca2+ mobilization. Hyperactivity of inflammasome in p38-deficient mice causes lung inflammation and increased susceptibility to septic shock.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Inmunidad Innata/fisiología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Sepsis/metabolismo , Choque Séptico/metabolismo , Transducción de Señal/fisiología
9.
J Nanobiotechnology ; 21(1): 231, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475025

RESUMEN

Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Proteínas , Transporte Biológico
10.
Skin Res Technol ; 29(2): e13283, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36823509

RESUMEN

BACKGROUND: Superficial lymphatic malformation (SLM) is a congenital disorder of the lymphatic channels. It usually appears as clusters of vesicles filled with lymphatic fluid and blood on the skin that resemble frogspawn, making it difficult to distinguish from haemangiomas, angiokeratomas, and pyogenic granulomas. Although pathological results have diagnostic values, the significance of noninvasive examination in the diagnosis and differential diagnosis is also worth exploring. MATERIALS AND METHODS: A 24-year-old female presented with a history of multiple asymptomatic, pink lesions located on the chest since age 10. Histopathological examination was performed, and results informed the diagnosis of SLM. Lesions were detected by dermoscopy and reflectance confocal microscopy (RCM). RESULTS: Dermoscopy (polarized, 30×) revealed multiple yellowish-red lacunae in a light red background that were separated by pale septa and "hypopyon sign" was observed. RCM displayed a honeycomb pattern and multiple dark cavities in the upper dermal layers separated by thin septa with a few hypo-refractile cells at the periphery that demonstrated slow fluid flow via dynamic scanning. CONCLUSION: We described a case of SLM detected by dermoscopy and RCM. Dermoscopic and RCM features may provide a potentially powerful, noninvasive instrument for the recognition and differentiation of SLM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Femenino , Humanos , Niño , Adulto Joven , Adulto , Neoplasias Cutáneas/patología , Melanoma/patología , Dermoscopía/métodos , Microscopía Confocal/métodos , Piel/patología , Diagnóstico Diferencial
11.
Proc Natl Acad Sci U S A ; 117(44): 27141-27147, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33024017

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the urgent need to rapidly develop therapeutic strategies for such emerging viruses without effective vaccines or drugs. Here, we report a decoy nanoparticle against COVID-19 through a powerful two-step neutralization approach: virus neutralization in the first step followed by cytokine neutralization in the second step. The nanodecoy, made by fusing cellular membrane nanovesicles derived from human monocytes and genetically engineered cells stably expressing angiotensin converting enzyme II (ACE2) receptors, possesses an antigenic exterior the same as source cells. By competing with host cells for virus binding, these nanodecoys effectively protect host cells from the infection of pseudoviruses and authentic SARS-CoV-2. Moreover, relying on abundant cytokine receptors on the surface, the nanodecoys efficiently bind and neutralize inflammatory cytokines including interleukin 6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and significantly suppress immune disorder and lung injury in an acute pneumonia mouse model. Our work presents a simple, safe, and robust antiviral nanotechnology for ongoing COVID-19 and future potential epidemics.


Asunto(s)
Infecciones por Coronavirus/terapia , Citocinas/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Neumonía Viral/terapia , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus , COVID-19 , Membrana Celular/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Células HEK293 , Humanos , Interleucina-6/antagonistas & inhibidores , Ratones , Ratones Endogámicos ICR , Monocitos , Nanopartículas/química , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Receptores de Citocinas/metabolismo , SARS-CoV-2 , Células THP-1
12.
Chem Soc Rev ; 51(4): 1336-1376, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050284

RESUMEN

Bioorthogonal chemistry is a powerful tool to site-specifically activate drugs in living systems. Bioorthogonal reactions between a pair of biologically reactive groups can rapidly and specifically take place in a mild physiological milieu without perturbing inherent biochemical processes. Attributed to their high selectivity and efficiency, bioorthogonal reactions can significantly decrease background signals in bioimaging. Compared with metal-catalyzed bioorthogonal click reactions, metal-free click reactions are more biocompatible without the metal catalyst-induced cytotoxicity. Although a great number of bioorthogonal chemistry-based strategies have been reported for cancer theranostics, a comprehensive review is scarce to highlight the advantages of these strategies. In this review, recent progress in cancer theranostics guided by metal-free bioorthogonal click chemistry will be depicted in detail. The elaborate design as well as the advantages of bioorthogonal chemistry in tumor theranostics are summarized and future prospects in this emerging field are emphasized.


Asunto(s)
Química Clic , Neoplasias , Catálisis , Humanos , Metales , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Medicina de Precisión
13.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445653

RESUMEN

SARS-CoV-2 relies on the recognition of the spike protein by the host cell receptor ACE2 for cellular entry. In this process, transmembrane serine protease 2 (TMPRSS2) plays a pivotal role, as it acts as the principal priming agent catalyzing spike protein cleavage to initiate the fusion of the cell membrane with the virus. Thus, TMPRSS2 is an ideal pharmacological target for COVID-19 therapy development, and the effective production of high-quality TMPRSS2 protein is essential for basic and pharmacological research. Unfortunately, as a mammalian-originated protein, TMPRSS2 could not be solubly expressed in the prokaryotic system. In this study, we applied different protein engineering methods and found that an artificial protein XXA derived from an antifreeze protein can effectively promote the proper folding of TMPRSS2, leading to a significant improvement in the yield of its soluble form. Our study also showed that the fused XXA protein did not influence the enzymatic catalytic activity; instead, it greatly enhanced TMPRSS2's thermostability. Therefore, our strategy for increasing TMPRSS2 expression would be beneficial for the large-scale production of this stable enzyme, which would accelerate aniti-SARS-CoV-2 therapeutics development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/metabolismo , Péptido Hidrolasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteolisis , Internalización del Virus , Mamíferos/metabolismo
14.
Anal Chem ; 94(29): 10479-10486, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35834188

RESUMEN

As the key player of a new restriction modification system, DNA phosphorothioate (PT) modification, which swaps oxygen for sulfur on the DNA backbone, protects the bacterial host from foreign DNA invasion. The identification of PT sites helps us understand its physiological defense mechanisms, but accurately quantifying this dynamic modification remains a challenge. Herein, we report a simple quantitative analysis method for optical mapping of PT sites in the single bacterial genome. DNA molecules are fully stretched and immobilized in a microfluidic chip by capillary flow and electrostatic interactions, improving the labeling efficiency by maximizing exposure of PT sites on DNA while avoiding DNA loss and damage. After screening 116 candidates, we identified a bifunctional chemical compound, iodoacetyl-polyethylene glycol-biotin, that can noninvasively and selectively biotinylate PT sites, enabling further labeling with streptavidin fluorescent nanoprobes. With this method, PT sites in PT+ DNA can be easily detected by fluorescence, while almost no detectable ones were found in PT- DNA, achieving real-time visualization of PT sites on a single DNA molecule. Collectively, this facile genome-wide PT site detection method directly characterizes the distribution and frequency of DNA modification, facilitating a better understanding of its modification mechanism that can be potentially extended to label DNAs in different species.


Asunto(s)
Genoma Bacteriano , Microfluídica , ADN , ADN Bacteriano/genética , Azufre
15.
Chem Soc Rev ; 50(4): 2839-2891, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33524093

RESUMEN

Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.


Asunto(s)
Antineoplásicos/química , Nanoestructuras/química , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisión/métodos , Nanomedicina Teranóstica/métodos , Animales , Antineoplásicos/farmacología , Transporte Biológico , ADN/química , Humanos , Liposomas/química , Nucleótidos/química , Compuestos Organometálicos/química , Proteínas/química
16.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746248

RESUMEN

In recent years, the unmanned aerial vehicle (UAV) remote sensing technology has been widely used in the planning, design and maintenance of urban distributed photovoltaic arrays (UDPA). However, the existing studies rarely concern the UAV swarm scheduling problem when applied to remoting sensing in UDPA maintenance. In this study, a novel scheduling model and algorithm for UAV swarm remote sensing in UDPA maintenance are developed. Firstly, the UAV swarm scheduling tasks in UDPA maintenance are described as a large-scale global optimization (LSGO) problem, in which the constraints are defined as penalty functions. Secondly, an adaptive multiple variable-grouping optimization strategy including adaptive random grouping, UAV grouping and task grouping is developed. Finally, a novel evolutionary algorithm, namely cooperatively coevolving particle swarm optimization with adaptive multiple variable-grouping and context vector crossover/mutation strategies (CCPSO-mg-cvcm), is developed in order to effectively optimize the aforementioned UAV swarm scheduling model. The results of the case study show that the developed CCPSO-mg-cvcm significantly outperforms the existing algorithms, and the UAV swarm remote sensing in large-scale UDPA maintenance can be optimally scheduled by the developed methodology.


Asunto(s)
Algoritmos , Tecnología de Sensores Remotos , Tecnología de Sensores Remotos/métodos
17.
EMBO J ; 36(17): 2544-2552, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754656

RESUMEN

TFEB is a master regulator for transcription of genes involved in autophagy and lysosome biogenesis. Activity of TFEB is inhibited upon its serine phosphorylation by mTOR The overall mechanisms by which TFEB activity in the cell is regulated are not well elucidated. Specifically, the mechanisms of TFEB turnover and how they might influence its activity remain unknown. Here, we show that STUB1, a chaperone-dependent E3 ubiquitin ligase, modulates TFEB activity by preferentially targeting inactive phosphorylated TFEB for degradation by the ubiquitin-proteasome pathway. Phosphorylated TFEB accumulated in STUB1-deficient cells and in tissues of STUB1-deficient mice resulting in reduced TFEB activity. Conversely, cellular overexpression of STUB1 resulted in reduced phosphorylated TFEB and increased TFEB activity. STUB1 preferentially interacted with and ubiqutinated phosphorylated TFEB, targeting it to proteasomal degradation. Consistent with reduced TFEB activity, accumulation of phosphorylated TFEB in STUB1-deficient cells resulted in reduced autophagy and reduced mitochondrial biogenesis. These studies reveal that the ubiquitin-proteasome pathway participates in regulating autophagy and lysosomal functions by regulating the activity of TFEB.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Fosforilación , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
18.
J Nanobiotechnology ; 19(1): 379, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34802438

RESUMEN

Matrix metalloproteinase (MMP) 2 and 9 are the family members of proteases normally up-regulated in tumor to enhance the invasion and metastatic of tumor cells, and are associated with poor outcome of head and neck squamous cell carcinomas (HNSCCs). In the present work, MMPs-degradable gelatin nanoparticles (GNPs) are simultaneously loaded with photosensitizer indocyanine green (ICG) along with signal transducer activator of transcription 3 (STAT3) inhibitor NSC74859 (NSC, N) for efficient photothermal therapy (PTT) and immunotherapy of HNSCCs. In the tumor tissue, Gel-N-ICG nanoparticle was degraded and encapsulated ICG and NSC were effectively released. Under near-infrared (NIR) irradiation, the released ICG nanoparticles enabled effective photothermal destruction of tumors, and the STAT3 inhibitor NSC elicited potent antitumor immunity for enhanced cancer therapy. Based on two HNSCC mouse models, we demonstrated that Gel-N-ICG significantly delayed tumor growth without any appreciable body weight loss. Taken together, the strategy reported here may contribute that the stimuli-responsive proteases triggered nanoplatform could reduce tumor size more effectively in complex tumor microenvironment (TME) through combination of PTT and immunotherapy.


Asunto(s)
Gelatinasas/metabolismo , Nanopartículas , Fármacos Fotosensibilizantes , Proteínas Inhibidoras de STAT Activados , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inmunoterapia , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/farmacología , Terapia Fototérmica , Proteínas Inhibidoras de STAT Activados/química , Proteínas Inhibidoras de STAT Activados/farmacocinética , Proteínas Inhibidoras de STAT Activados/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores
19.
Angew Chem Int Ed Engl ; 60(50): 26320-26326, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661332

RESUMEN

Herein, we report that genetically programmable fusion cellular vesicles (Fus-CVs) displaying high-affinity SIRPα variants and PD-1 can activate potent antitumor immunity through both innate and adaptive immune effectors. Dual-blockade of CD47 and PD-L1 with Fus-CVs significantly increases the phagocytosis of cancer cells by macrophages, promotes antigen presentation, and activates antitumor T-cell immunity. Moreover, the bispecific targeting design of Fus-CVs ensures better targeting on tumor cells, but less on other cells, which reduces systemic side effects and enhances therapeutic efficacies. In malignant melanoma and mammary carcinoma models, we demonstrate that Fus-CVs significantly improve overall survival of model animals by inhibiting post-surgery tumor recurrence and metastasis. The Fus-CVs are suitable for protein display by genetic engineering. These advantages, integrated with other unique properties inherited from source cells, make Fus-CVs an attractive platform for multi-targeting immune checkpoint blockade therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia , Neoplasias/terapia , Proteínas Recombinantes de Fusión/inmunología , Animales , Antígeno B7-H1/inmunología , Antígeno CD47/inmunología , Línea Celular Tumoral , Femenino , Ratones , Neoplasias/inmunología , Proteínas Recombinantes de Fusión/genética
20.
Angew Chem Int Ed Engl ; 60(32): 17570-17578, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34041833

RESUMEN

The clinical application of chemodynamic therapy is impeded by the insufficient intracellular H2 O2 level in tumor tissues. Herein, we developed a supramolecular nanoparticle via a simple one-step supramolecular polymerization-induced self-assembly process using platinum (IV) complex-modified ß-cyclodextrin-ferrocene conjugates as supramolecular monomers. The supramolecular nanoparticles could dissociate rapidly upon exposure to endogenous H2 O2 in the tumor and release hydroxyl radicals as well as platinum (IV) prodrugs in situ, which is reduced into cisplatin to significantly promote the generation of H2 O2 in the tumor tissue. Thus, the supramolecular nanomedicine overcomes the limitation of conventional chemodynamic therapy via the self-augmented cascade radical generation and drug release. In addition, dissociated supramolecular nanoparticles could be readily excreted from the body via renal clearance to effectively avoid systemic toxicity and ensure long term biocompatibility of the nanomedicine. This work may provide new insights on the design and development of novel supramolecular nanoassemblies for cascade chemo/chemodynamic therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/toxicidad , Portadores de Fármacos/síntesis química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Femenino , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/metabolismo , Compuestos Ferrosos/uso terapéutico , Compuestos Ferrosos/toxicidad , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Metalocenos/síntesis química , Metalocenos/metabolismo , Metalocenos/uso terapéutico , Metalocenos/toxicidad , Ratones Endogámicos BALB C , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Platino (Metal)/química , Polimerizacion , Polímeros/síntesis química , Polímeros/metabolismo , Polímeros/toxicidad , Profármacos/química , Profármacos/metabolismo , Profármacos/uso terapéutico , Profármacos/toxicidad , beta-Ciclodextrinas/síntesis química , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/uso terapéutico , beta-Ciclodextrinas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA