Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 178(5): 1145-1158.e20, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31402173

RESUMEN

While Mediator plays a key role in eukaryotic transcription, little is known about its mechanism of action. This study combines CRISPR-Cas9 genetic screens, degron assays, Hi-C, and cryoelectron microscopy (cryo-EM) to dissect the function and structure of mammalian Mediator (mMED). Deletion analyses in B, T, and embryonic stem cells (ESC) identified a core of essential subunits required for Pol II recruitment genome-wide. Conversely, loss of non-essential subunits mostly affects promoters linked to multiple enhancers. Contrary to current models, however, mMED and Pol II are dispensable to physically tether regulatory DNA, a topological activity requiring architectural proteins. Cryo-EM analysis revealed a conserved core, with non-essential subunits increasing structural complexity of the tail module, a primary transcription factor target. Changes in tail structure markedly increase Pol II and kinase module interactions. We propose that Mediator's structural pliability enables it to integrate and transmit regulatory signals and act as a functional, rather than an architectural bridge, between promoters and enhancers.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón , Elementos de Facilitación Genéticos , Edición Génica , Humanos , Masculino , Complejo Mediador/química , Complejo Mediador/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Estructura Cuaternaria de Proteína , ARN Polimerasa II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
2.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29706548

RESUMEN

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genoma , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN , Humanos , Ratones , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
3.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28735753

RESUMEN

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Asunto(s)
Fragilidad Cromosómica , Roturas del ADN de Doble Cadena , Neoplasias/genética , Animales , Linfocitos B/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Represoras/metabolismo
4.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985562

RESUMEN

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Genoma Humano , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Código de Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , Cohesinas
5.
Cell ; 159(7): 1665-80, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25497547

RESUMEN

We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.


Asunto(s)
Núcleo Celular/genética , Cromatina/química , Genoma Humano , Animales , Factor de Unión a CCCTC , Línea Celular , Núcleo Celular/química , Regulación de la Expresión Génica , Código de Histonas , Humanos , Ratones , Conformación Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo
7.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803781

RESUMEN

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Asunto(s)
Linfocitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Activación de Linfocitos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/inmunología , Línea Celular , Cromatina/química , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Genotipo , Histonas/química , Inmunidad Humoral , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación de Ácido Nucleico , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Imagen Individual de Molécula , Relación Estructura-Actividad , Factores de Tiempo , Transcripción Genética
8.
PLoS Genet ; 14(12): e1007872, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586358

RESUMEN

Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.


Asunto(s)
Paseo de Cromosoma/métodos , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 19/ultraestructura , Modelos Genéticos , Células Cultivadas , Pintura Cromosómica/métodos , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/ultraestructura , Cromosomas Humanos Par 19/química , Femenino , Colorantes Fluorescentes , Humanos , Imagenología Tridimensional , Hibridación Fluorescente in Situ/métodos , Masculino , Sondas de Oligonucleótidos , Linaje
9.
Am J Med Genet A ; 179(6): 1080-1090, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30874362

RESUMEN

Cornelia de Lange Syndrome (CdLS), due to mutations in genes of the cohesin protein complex, is described as a disorder of transcriptional regulation. Phenotypes in this expanding field include short stature, microcephaly, intellectual disability, variable facial features and organ involvement, resulting in overlapping presentations, including established syndromes and newly described conditions. Individuals with all forms of CdLS have multifaceted complications, including neurodevelopmental, feeding, craniofacial, and communication. Coping mechanisms and management of challenging behaviors in CdLS, disruption of normal behaviors, and how behavior molds the life of the individual within the family is now better understood. Some psychotropic medications are known to be effective for behavior. Other medications, for example, Indomethacin, are being investigated for effects on gene expression, fetal brain tissue, brain morphology and function in Drosophila, mice, and human fibroblasts containing CdLS-related mutations. Developmental studies have clarified the origin of cardiac defects and role of placenta in CdLS. Chromosome architecture and cohesin complex structure are elucidated, leading to a better understanding of regulatory aspects and controls. As examples, when mutations are present, the formation of loop domains by cohesin, facilitating enhancer-promotor interactions, can be eliminated, and embryologically, the nuclear structure of zygotes is disrupted. Several important genes are now known to interact with cohesin, including Brca2. The following abstracts are from the 8th Cornelia de Lange Syndrome Scientific and Educational Symposium, held in June 2018, Minneapolis, MN, before the CdLS Foundation National Meeting, AMA CME credits provided by GBMC, Baltimore, MD. All studies have been approved by an ethics committee.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudios de Asociación Genética/métodos , Humanos , Cohesinas
10.
Am J Med Genet A ; 179(6): 1080-1090, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39070592

RESUMEN

Cornelia de Lange Syndrome (CdLS), due to mutations in genes of the cohesin protein complex, is described as a disorder of transcriptional regulation. Phenotypes in this expanding field include short stature, microcephaly, intellectual disability, variable facial features and organ involvement, resulting in overlapping presentations, including established syndromes and newly described conditions. Individuals with all forms of CdLS have multifaceted complications, including neurodevelopmental, feeding, craniofacial, and communication. Coping mechanisms and management of challenging behaviors in CdLS, disruption of normal behaviors, and how behavior molds the life of the individual within the family is now better understood. Some psychotropic medications are known to be effective for behavior. Other medications, for example, Indomethacin, are being investigated for effects on gene expression, fetal brain tissue, brain morphology and function in Drosophila, mice, and human fibroblasts containing CdLS-related mutations. Developmental studies have clarified the origin of cardiac defects and role of placenta in CdLS. Chromosome architecture and cohesin complex structure are elucidated, leading to a better understanding of regulatory aspects and controls. As examples, when mutations are present, the formation of loop domains by cohesin, facilitating enhancer-promotor interactions, can be eliminated, and embryologically, the nuclear structure of zygotes is disrupted. Several important genes are now known to interact with cohesin, including Brca2. The following abstracts are from the 8th Cornelia de Lange Syndrome Scientific and Educational Symposium, held in June 2018, Minneapolis, MN, before the CdLS Foundation National Meeting, AMA CME credits provided by GBMC, Baltimore, MD. All studies have been approved by an ethics committee.

11.
J Theor Biol ; 457: 112-123, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30138629

RESUMEN

Locomotion involves complex interactions between an organism and its environment. Despite these complex interactions, many characteristics of the motion of an animal's center of mass (COM) can be modeled using simple mechanical models such as inverted pendulum (IP) and spring-loaded inverted pendulum (SLIP) which employ a single effective leg to model an animal's COM. However, because these models are simple, they also have many limitations. We show that one limitation of IP and SLIP and many other simple mechanical models of locomotion is that they cannot model many observed features of locomotion at slow speeds. This limitation is due to the fact that the gravitational force is too strong, and, if unopposed, compels the animal to complete its stance in a relatively short time. We propose a new model, AS-IP (Angular Spring modulated Inverted Pendulum), in which the body is attached to the leg using springs which resist the leg's movement away from the vertical plane, and thus provides a means to model forces that effectively counter gravity. We show that AS-IP provides a mechanism by which an animal can tune its stance duration, and provide evidence that AS-IP is an excellent model for the motion of a fly's COM. More generally, we conclude that combining AS-IP with SLIP will greatly expand our ability to model legged locomotion over a range of speeds.


Asunto(s)
Modelos Biológicos , Caminata/fisiología , Animales , Drosophila melanogaster
12.
Proc Natl Acad Sci U S A ; 112(47): E6456-65, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26499245

RESUMEN

We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic "tension globule." In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.


Asunto(s)
Cromatina/química , Cromatina/genética , Ingeniería Genética , Genoma/genética , Conformación de Ácido Nucleico , Anisotropía , Emparejamiento Base , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Simulación por Computador , Difusión , Fractales , Humanos , Hibridación Fluorescente in Situ , Modelos Moleculares , Motivos de Nucleótidos/genética , Polímeros/química , Probabilidad , Proteínas Represoras/metabolismo , Cohesinas
13.
Genome Biol ; 25(1): 77, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519987

RESUMEN

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS: Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS: Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.


Asunto(s)
Cromatina , Lamina Tipo B , Animales , Lamina Tipo B/genética , Heterocromatina , Hibridación Fluorescente in Situ , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas , Expresión Génica , Mamíferos/genética
14.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39026740

RESUMEN

Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated. Here, we developed CRISPRi of regulatory elements upon degron operation (CRUDO), a novel approach to measure how changes in contact frequency impact enhancer effects on target genes by perturbing enhancers with CRISPRi and measuring gene expression in the presence or absence of cohesin. We systematically perturbed all 1,039 candidate enhancers near five cohesin-dependent genes and identified 34 enhancer-gene regulatory interactions. Of 26 regulatory interactions with sufficient statistical power to evaluate cohesin dependence, 18 show cohesin-dependent effects. A decrease in enhancer-promoter contact frequency upon removal of cohesin is frequently accompanied by a decrease in the regulatory effect of the enhancer on gene expression, consistent with a contact-based model for enhancer function. However, changes in contact frequency and regulatory effects on gene expression vary as a function of distance, with distal enhancers (e.g., >50Kb) experiencing much larger changes than proximal ones (e.g., <50Kb). Because most enhancers are located close to their target genes, these observations can explain how only a small subset of genes - those with strong distal enhancers - are sensitive to cohesin. Together, our results illuminate how 3D contacts, influenced by both cohesin and genomic distance, tune enhancer effects on gene expression.

15.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425796

RESUMEN

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS: Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS: Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.

16.
PLoS One ; 18(11): e0294283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38032990

RESUMEN

Early detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing and de novo genome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control's 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
17.
Nat Commun ; 14(1): 3303, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280210

RESUMEN

Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF's RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Cromatina/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Elementos de Facilitación Genéticos/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regiones Promotoras Genéticas
18.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014075

RESUMEN

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

19.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066421

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

20.
Res Sq ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503119

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA