Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Angew Chem Int Ed Engl ; 60(22): 12532-12538, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33734534

RESUMEN

Here, we demonstrate the simultaneous utilization of both the hot carriers (electrons and holes) in the photocatalytic transformation of benzylamine to N-benzylidenebenzylamine and the scope of reaction has also been successfully demonstrated with catalytic oxidation of 4-methoxybenzylamine. The wavelength-dependent excitation of AuNP allows us to tune the potential energy of charge carriers relative to the redox potential of the reactants which leads to energetically favorable product formation on the nanoparticle surface. We capture the formation of reaction intermediates and products by using in situ Raman spectroscopy, complemented by NMR spectroscopy and GC-MS. Based on the experimental substantiations, a plausible reaction mechanism has been proposed.

2.
J Am Chem Soc ; 141(1): 643-647, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30537807

RESUMEN

Performing electron-transfer reactions on metal nanoparticles requires separation of charge carriers at the nanoparticle and their transfer to the reacting molecules. Inducing these reactions using light is challenging due to the exceedingly short lifetimes of energetic charge carriers formed in metal nanoparticles under light illumination. The results described here show that certain conditions must be met to drive these electron-transfer reactions on plasmonic nanoparticles. One critical requirement is that the process of electronic excitation takes place at the nanoparticle/molecule interface. This is accomplished by high plasmonic electric fields at the surface of plasmonic nanoparticles. Furthermore, it is also evident from our study that the electron (or hole)-donating capacity of the hole (or electron) scavengers needs to be high enough to allow for the extraction of holes (or electrons) from the nanoparticle/molecule complex, therefore completing the catalytic cycle. We discuss these findings through a case study of the conversion of methylene blue (MB) into a reduced MB ion radical on the surface of plasmonic Ag and Ag-Pt core-shell nanoparticles. To directly monitor the reduction reaction of MB on the nanoparticle surfaces, we have used time-dependent in situ surface-enhanced Raman scattering measurement, which also informs us about the underlying mechanistic details of plasmon-driven charge transfer.

3.
Faraday Discuss ; 214: 441-453, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30801580

RESUMEN

We use experimental and computational studies of core-shell metal-semiconductor and metal-molecule systems to investigate the mechanism of energy flow and energetic charge carrier generation in multicomponent plasmonic systems. We demonstrate that the rates of plasmon decay through the formation of energetic charge carriers are governed by two factors: (1) the intensity of the local plasmon induced electric fields at a specific location in the multicomponent nanostructure, and (2) the availability of direct, momentum conserved electronic excitations in the material located in that specific location. We propose a unifying physical framework that describes the flow of energy in all multicomponent plasmonic systems and leads us towards molecular control of the energy flow and excited charge carrier generation in these systems.

4.
Phys Chem Chem Phys ; 19(26): 17216-17223, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28639652

RESUMEN

Interfacial charge transfer dynamics in dye-sensitized NiO nanoparticles are being investigated for photocathodes in p-type dye-sensitized solar cells. In the photoreaction, after fast electron transfer from NiO to a molecule, the recombination of the hole in the nanoparticles with the electron in a reduced molecule plays an important role in the charge separation process and solar energy harvesting. Nevertheless, knowledge of the interfacial charge recombination (CR) rate and its mechanism is still limited due to the complex photoinduced electron and hole dynamics and lack of characterization of the inhomogeneity of the dynamics. Here, we report our work on probing interfacial charge recombination dynamics in Zn(ii)-5,10,15,20-tetra(3-carboxyphenyl)porphyrin (m-ZnTCPP) dye-sensitized NiO nanoparticles by correlating single-molecule fluorescence blinking dynamics with charge transfer dynamics using single-molecule photon-stamping spectroscopy. The correlated analyses of single-molecule fluorescence intensity, lifetime, and blinking reveal the intrinsic distribution and temporal fluctuation of interfacial charge transfer reactivity, which are closely related to site-specific molecular interactions and dynamics.

5.
J Am Chem Soc ; 138(5): 1536-42, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26735967

RESUMEN

Fundamental understanding of the energetic coupling properties of a molecule-semiconductor interface is of great importance. The changes in molecular conformations and vibrational modes can have significant impact on the interfacial charge transfer reactions. Here, we have probed the change in the interface properties of alizarin-TiO2 system as a result of the externally applied electric field using single-hot spot microscopic surface-enhanced Raman spectroscopy (SMSERS) and provided a theoretical understanding of our experimental results by density functional theory (DFT) calculations. The perturbation, caused by the external potential, has been observed as a shift and splitting of the 648 cm(-1) peak, typical indicator of the strong coupling between alizarin and TiO2, at SMSERS. On the basis of our experimental results and DFT calculations, we suggest that electric field has significant effects on vibrational coupling at the molecule-TiO2 interface. The presence of perturbed alizarin-TiO2 coupling under interfacial electric potential may lead to changes in the interfacial electron transfer dynamics. Additionally, heterogeneously distributed dye molecules at the interface on nanometer length scale and different chromophore-semiconductor binding interactions under charge accumulation associated interfacial electric field changes create intrinsically inhomogeneous interfacial ET dynamics associated with both static and dynamic disorders.

6.
Langmuir ; 29(1): 133-43, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23215031

RESUMEN

2,2'-Bipyridine-3,3'-diol (BP(OH)(2)) has been used as a sensitive excited-state intramolecular proton transfer fluorophore to assess different bile salt aggregates as one of the potential biologically relevant host systems useful for carrying many sparingly water-soluble drug molecules. The formation of inclusion complexes, complex-induced fluorescence behavior, and their binding ability have been investigated from the modulated photophysics of BP(OH)(2) by means of photophysical techniques. The constrained hydrophobic environment provided by the aggregates significantly reduces the water-assisted nonradiative decay channels and lengthens the fluorescence lifetime of the proton-transferred DK tautomer. Both the absorption and fluorescence properties of BP(OH)(2) are found to be sensitive to the change in the structure, size, and hydrophobicity of the aggregates. Fluorescence quenching experiments were performed to gain insight into the differential distribution of the probe molecules between bulk aqueous phase and nanocavities of various aggregates. The observation of longer fluorescence lifetime and rotational relaxation time in NaDC aggregates compared to that in NaCh and NaTC aggregates indicates that the binding structures of NaDC aggregates are more rigid due to its greater hydrophobicity and larger size and therefore provide better protection to the bound guest. It is noteworthy to mention that the hydrophobic microenvironments provided by bile salt aggregates are much stronger than that provided by micelles and cyclodextrins. The accessibility of water to the aggregate-bound guest can significantly be enhanced with the addition of organic cosolvents. However, the efficiency decreases in the order of dimethylformamide, acetonitrile, and methanol.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Ácidos y Sales Biliares/química , 2,2'-Dipiridil/química , Fluorescencia , Estructura Molecular , Fotoquímica
7.
Chemphyschem ; 13(7): 1893-901, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22344856

RESUMEN

We used fluorescence probing, ζ potentials, and dynamic light scattering measurements to study the interactions between the zwitterionic surfactant N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16) and three ionic liquids (ILs), 1-ethyl-3-methylimidazolium ethylsulfate ([C(2)mim][C(2)SO(4)]), 1-ethyl-3-methylimidazolium n-butylsulfate ([C(2)mim][C(4)SO(4)]), and 1-ethyl-3-methylimidazolium n-hexylsulfate ([C(2)mim][C(6)SO(4)]). The three ILs have the same cationic part and their anionic parts differ only in the length of the alkyl chain. The aim of our work is to offer a comparative study and establish the role of the alkyl chain length of the anion of ILs on 1) the incorporation of these anions in the zwitterionic micelles of SB-16 (selectivity of anions) and 2) the physicochemical properties of aqueous solutions of SB-16. Results show that, at lower concentrations (i.e. ≤20 mM), the different ILs modify the properties of the aqueous SB-16 solution in similar manner. All of them bring about a decrease in the critical micelle concentration (CMC) and also in size, and increase the aggregation number of the SB-16 micelles; these effects are more dramatic when [C(2)mim][C(6)SO(4)] is used as the additive rather than [C(2)mim][C(4)SO(4)] and [C(2)mim][C(2)SO(4)]. It is proposed that, in case of [C(2)mim][C(6)SO(4)], the presence of a hexyl chain on the hexylsulfate ion allows the ion to align itself with the tail part of SB-16, whereas, in the case of [C(2)mim][C(2)SO(4)], the presence of ethyl chain in the ethylsulfate ion is not sufficient to bring about a similar alignment of the ethylsulfate anion with the tail part of SB-16. This difference in the location of the anions of the ILs is responsible for the different behavior of the ILs.

8.
Phys Chem Chem Phys ; 14(25): 8925-35, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22403767

RESUMEN

Photoinduced electron transfer (ET) reactions between coumarin dyes and N,N-dimethylaniline have been investigated inside niosome, a nonionic innocuous polyethylene glycol (PEG)-based surfactant assembly using steady state and time-resolved fluorescence measurements. The location of coumarin dyes inside the bilayer headgroup region of niosome has been reported and it was verified by determination of the high distribution coefficient of all the dyes inside niosome compared to bulk water. Fluorescence anisotropy parameters of the dyes inside niosome are also in good correlation with the above inference about their location. Bimolecular diffusion guided rates inside niosome were determined by comparing the microviscosities inside niosome and in acetonitrile and butanol solutions and it was found that diffusion of the donor and the acceptor is much slower than the ET rates, implying insignificant role of reactant diffusion in ET reaction inside niosome. We have observed a Marcus inversion region in our restricted media, which shows maxima at lower exergonicity. Such behavior has been demonstrated by the presence of nonequilibrium solvent excited state using two dimensional ET (2DET) theory. Unusually high quenching rates of two coumarins C-152 and C-152A inside niosome were explained by the presence of a stable non-fluorescent twisted intramolecular charge transfer (TICT) state along with an emissive intramolecular charge transfer (ICT) state. Moreover, intermolecular hydrogen bonding between carbonyl oxygens of these two dyes and water in their non-emissive and emissive charge transfer states also plays a key role in their dynamical exchange with each other [G.-J. Zhao and K.-L. Han, Acc. Chem. Res., 2011].

9.
Phys Chem Chem Phys ; 13(9): 3711-20, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21170434

RESUMEN

The fluorescence resonance energy transfer (FRET) in a lipid bilayer system containing two different donors and one common acceptor at below and above transition temperature has been studied and all the FRET parameters are analyzed using steady state and time-resolved fluorescence spectroscopy. Using dynamic light scattering measurement, we have followed the process of preparation of small unilamellar vesicles, and by following the FRET parameters of C-153-Rh6G and C-151-Rh6G pairs inside SUVs at 16 °C and 33 °C (T(m) = 23.9 °C) we have noticed that there is greater effect of temperature on the FRET parameters in case of the C-153-Rh6G pair than that of the C-151-Rh6G pair. Finally we have concluded that this difference is due to their different location inside the lipid bilayer in which fluidity of the long alkyl chain markedly affects the FRET parameters for C-153-Rh6G pair embedded inside a small unilamellar vesicle of size 20-50 nm.

10.
J Chem Phys ; 134(7): 074507, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21341859

RESUMEN

In this study we have characterized a ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl- sulfonyl)imide containing ternary nonaqueous microemulsion ([Emim][Tf(2)N]∕∕TX-100∕cyclo- hexane). The phase behavior and dynamic light scattering study show that the [Emim][Tf(2)N]∕TX-100∕cyclohexane three component system can form microemulsion with [Emim][Tf(2)N] as polar core at suitable condition. We have investigated photoinduced electron transfer (PET) using dimethyl aniline as electron donor and several Coumarin dyes as electron acceptor molecules at two different R values (R = [ionic liquid]∕[surfactant]) to observe how the dynamics of the PET rate is affected in this type of confined microenvironment compared to that of the PET dynamics in neat ionic liquid and other pure solvent media. The plot of observed k(q) values with the free energy change (ΔG(0)) for electron transfer reaction shows an apparent inversion in the observed rate as predicted by the Marcus theory.

11.
J Phys Chem B ; 113(25): 8626-34, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19489583

RESUMEN

The dynamics of solvent and rotational relaxation of coumarin 153 (C-153) has been studied in neat N,N,N-trimethyl-N-propyl ammonium bis(trifluoromethanesulfonyl) imide ([N(3111)][Tf(2)N]) and its mixtures with polar solvents, namely, methanol and acetonitrile at three different temperatures from 294 to 303 K. Both the solvent and rotational relaxation dynamics of C-153 in neat [N(3111)][Tf(2)N] are linearly correlated with the bulk viscosity at different temperatures. The solvent relaxation time and rotational relaxation time of C-153 decrease with gradual addition of cosolvents in [N(3111)][Tf(2)N]. The gradual addition of cosolvent decreases the viscosity of the medium, and consequently, the solvation and rotational relaxation time also decrease. The decrease of solvation time is more pronounced on addition of acetonitrile compared to methanol.

12.
J Phys Chem B ; 120(8): 1685-97, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26468609

RESUMEN

Photoinduced, interfacial electron transfer (ET) dynamics between m-ZnTCPP and Sn-doped In2O3 (ITO) film has been studied using single-molecule photon-stamping spectroscopy. The observed ET dynamics of single m-ZnTCPP adsorbed on ITO was compared with that of m-ZnTCPP adsorbed on TiO2 NPs with and without applied electric potential. Compared to m-ZnTCPP on the TiO2 NP surface, m-ZnTCPP on the ITO surface shows a reduced lifetime as well as suppressed blinking and a quasi-continuous distribution of fluorescence intensities, presumably due to higher electron density in ITO. The higher electron density leads to the occupancy of CB acceptor states/trap states, which supports a higher backward electron transfer (BET) rate that results in a quasi-continuous distribution of fluorescence intensities. The dependence of BET rate on electron density and charge trapping is consistent with our previous observations of quasi-continuous distribution of fluorescence intensities of m-ZnTCPP on TiO2 NPs with applied negative potential across the dye-TiO2 interface. The quasi-continuous distribution of fluorescence intensities in both cases of m-ZnTCPP on the ITO surface and m-ZnTCPP on TiO2 NPs with applied negative potential indicates that the electron density in the semiconductor plays a dominant role in dictating the changes in rates of charge transfer, rather than the relative energetics between electrons in the semiconductor and the oxidized sensitizer.

13.
J Phys Chem Lett ; 7(12): 2221-7, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27214587

RESUMEN

The fundamental information related to the energy flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure is critical for understanding interfacial electron-transfer (ET) dynamics. The inhomogeneous nanoscale molecule-surface and molecule-molecule interactions are presumably the origins of the complexity in interfacial ET dynamics; thus, identifying the environment of molecules at nanoscale is crucial. We have developed atomic force microscopy (AFM) correlated single-molecule fluorescence intensity/lifetime imaging microscopy (AFM-SMFLIM) capable of identifying and characterizing individual molecules distributed across the heterogeneous surface at the nanometer length scale. Using the novel AFM-SMFLIM imaging, we are able to obtain nanoscale morphology and interfacial ET dynamics at a single-molecule level. Moreover, the observed blinking behavior and lifetime of each molecule in combination with the topography of the environment at nanoscale provide the location of each molecule on the surface (TiO2 vs cover glass) at nanoscale and the coupling strength of each molecule with TiO2 nanoparticles.

14.
Chem Commun (Camb) ; 51(94): 16821-4, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26434919

RESUMEN

Single-molecule photon-stamping spectroscopy correlated with electrochemical techniques was used to dissect complex interfacial electron transfer (ET) dynamics by probing an m-ZnTCPP molecule anchored to a TiO2 NP surface while electrochemically controlling the energetically-accessible surface states of TiO2 NPs. Application of negative potential increases the electron density in TiO2 NPs, resulting in hindered forward ET and enhanced backward ET due to the changes in the interfacial electric field and the occupancy of acceptor states.

15.
J Phys Chem B ; 117(5): 1480-93, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23311718

RESUMEN

A method developed for the first time, to create a huge number of ionic liquid (IL)-in-oil microemulsions has been discussed in our earlier publication (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B 2012, 116, 2850-2855). Here, we present facile methods to adjust the structural parameters of microemulsions using different ionic liquids (ILs) as additives (polar phase). We have characterized ILs/[C(4)mim][AOT]/benzene ternary system by performing a phase behavior study, dynamic light scattering (DLS) measurements, and (1)H NMR measurements. The IL loading capacity of microemulsions (area of single phase region) (i) increases with increase in alkyl chain length of cation of ILs and follows the trend [C(6)mim][TF(2)N] > [C(4)mim][TF(2)N] > [C(2)mim][TF(2)N], (ii) increases with decrease in cation anion interaction strength of added ILs and follows the trend [C(4)mim][TF(2)N] > [C(4)mim][PF(6)] > [C(4)mim][BF(4)]. So depending on the IL used, the amount of IL within the core of microemulsions can be easily manipulated to directly affect the size of aggregates in microemulsions. The size increase with increasing R value (R value is defined as the molar ratio of RTILs to [C(4)mim][AOT]) was found to be maximum in the case of [C(2)mim][TF(2)N]/[C(4)mim][AOT]/benzene microemulsions and follows the trend [C(2)mim][TF(2)N] > [C(4)mim][TF(2)N] > [C(6)mim][TF(2)N]. However, the size increase was almost the same with increase in R value in the case of ILs with different anions. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions, so we investigated the effect of temperature on size of aggregates in microemulsions at R = 1.0. It is evident from dynamic light scattering measurements that the aggregates in microemulsions remain monodisperse in nature with increasing temperature, and in all the cases, the size of aggregates in microemulsions decreases with increasing temperature. The effect of water addition on IL-in-oil (IL/O) microemulsions was also studied in detail. By far, this is the first report where the effect of water addition on microemulsions containing hydrophobic ILs is being reported and compared with microemulsions containing hydrophilic ILs. We observed that the added water has a prominent effect on the microstructure of the microemulsions. In all the cases, (1)H NMR spectra provide more detailed information about intra/intermolecular interactions thus affording a clear picture of locations of (i) the RTILs in RTILs/[C(4)mim][AOT]/benzene microemulsions and (ii) the added water molecules in microemulsions.

16.
J Phys Chem B ; 117(24): 7472-80, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23697660

RESUMEN

Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.


Asunto(s)
Líquidos Iónicos/química , Miristatos/química , Aceites/química , Temperatura , Aniones/química , Emulsiones/química , Estructura Molecular , Propiedades de Superficie
17.
J Phys Chem B ; 117(19): 5886-97, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23597208

RESUMEN

In this investigation, we present microemulsions comprising a nonionic surfactant, Triton X-100 (TX-100), cyclohexane as nonpolar phase, and room temperature ionic liquids (RTILs) as a polar medium. To investigate the effect of alkyl chain length of ionic liquid on the physicochemical properties of microemulsions, we have used 1-ethyl-3-methylimidazolium n-butyl sulfate [C2mim][C4SO4], 1-ethyl-3-methylimidazolium n-hexyl sulfate [C2mim][C6SO4], and 1-ethyl-3-methylimidazolium n-octyl sulfate [C2mim][C8SO4] as polar media. The phase behavior of these ternary systems is investigated by direct observation of transition from clear transparent solution to turbid solution by using UV-vis spectrophotometer at 298 K. The single-phase region is found to increase with increase in chain length of RTIL anion. Dynamic light scattering (DLS) measurements revealed the formation of highly stable nano-sized RTIL-containing microemulsions. The size of the microemulsions increases with the addition of ionic liquid. The maximum increase in size is observed with the addition of [C2mim][C4SO4]. It is proposed that the long octyl chain of octyl sulfate allows the anion to align itself along the TX-100 molecules which increases the rigidity of microemulsions, whereas in case of [C2mim][C4SO4], the short butyl chain is apparently unable to do the same. The dynamics of solvent and rotational relaxation of coumarin 480 (C-480) has also been investigated in these ionic liquid containing microemulsions ([C2mim][C4SO4]/TX-100/cyclohexane, [C2mim][C6SO4]/TX-100/cyclohexane, and [C2mim][C8SO4]/TX-100/cyclohexane) using picosecond time-resolved fluorescence spectroscopy. In RTIL microemulsions, solvent relaxation becomes retarded compared to neat RTIL. We have also shown that with increasing R value, the solvation dynamics becomes faster and the decrease in average solvation time is more pronounced in [C2mim][C4SO4]/TX-100/cyclohexane compared to [C2mim][C6SO4]/TX-100/cyclohexane and [C2mim][C8SO4]/TX-100/cyclohexane microemulsions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-23220680

RESUMEN

Understanding ion transport dynamics, structure of surfactant aggregates in ionic liquids or ionic liquid/water solutions are quite interesting and potentially important due to widespread applications of surfactant-based systems. In this manuscript we have investigated the effect of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)) addition on solvent and rotational relaxation of coumarin-153 (C-153) and coumarin-480 (C-480) in aqueous solution of sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (NaAOT) using steady state and picosecond time resolved fluorescence spectroscopy. The strong adsorption of the bmim(+) at the interface and the role of the ionic liquid particularly the cation bmim(+) in the modification of the interfacial geometry were probed by the analysis of decay parameters and the rotational relaxation parameters. Since the addition of the NaAOT in water-bmimBF(4) mixture above critical micellar concentration (48 mM, obtained from observing pyrene fluorescence) causes strong adsorption of the ionic liquid particularly the cation bmim(+), the average solvation time, particularly the slow component increases significantly. More importantly we have found the probe dependent solvation dynamics due to the different location of the probe molecules, C-153 and C-480. C-153 being hydrophobic in nature resides in the stern layer and the adsorption of the bmim(+) at the interface modifies stern layer more effectively. So we have observed more pronounced change in solvation dynamics in case of C-153 compared to that in case of C-480. The fluorescence anisotropy decays of the probe molecules were found to be biexponential in nature. The anisotropy decay was interpreted by using a model which consists of the wobbling (rotational) and translational diffusion of the dye coupled with the rotational motion of the micelle as a whole.


Asunto(s)
Cumarinas/química , Imidazoles/química , Líquidos Iónicos/química , Quinolizinas/química , Succinatos/química , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Micelas , Tamaño de la Partícula , Dispersión de Radiación , Solventes/química , Espectrometría de Fluorescencia
19.
J Phys Chem B ; 116(47): 13868-77, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23127156

RESUMEN

In this manuscript, we have characterized two different micellar aggregates containing all nonvolatile components. We have shown (i) the effect of ethylammonium nitrate (EAN) addition on the properties of micellar solution of Triton X-100 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)) and (ii) the effect of bmimPF(6) addition on the properties of micellar solution of Triton X-100 in EAN. To investigate the effect, we have used (1)H NMR, pulsed-field gradient spin-echo NMR (PFGSE NMR), and methyl orange (MO) and coumarin 153 (C-153) as absorption and emission probes, respectively. The penetration of added EAN inside the Triton X-100/bmimPF(6) micellar aggregates is indicated by (i) red shift in both the absorption spectra of MO and emission spectra of C-153 and (ii) downfield shift of proton signals of ethylene oxide units in Triton X-100. On the other hand, (1)H NMR and PFGSE NMR indicates the penetration of added bmimPF(6) inside the Triton X-100/EAN micellar aggregates. However, the constancy of both the absorption spectra of MO and emission spectra of C-153 indicates that the microenvironment around the probe molecules remains unaffected. We have also investigated the effect of micelle formation and the effect of penetration of ionic liquids (ILs) in micellar aggregates, on the solvation dynamics of C-153. The solvent relaxation around C-153 gets retarded on going from neat ILs to the micellar solution of Triton X-100 in ILs. In addition to this, we have also observed that with the addition of EAN in Triton X-100/bmimPF(6) micellar aggregates the solvation dynamics becomes faster, whereas with the addition of bmimPF(6) in Triton X-100/EAN micellar aggregates we did not observe any notable change in solvation dynamics. This observation further supports the conclusions drawn from UV-visible and NMR studies.

20.
J Phys Chem B ; 116(30): 8780-92, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22702418

RESUMEN

The modulation of the photophysical properties of 1'-hydroxy-2'-acetonaphthone (HAN) upon encapsulation into the hydrophobic nanocavities of different bile salt aggregates has been investigated for the first time using steady-state and time-resolved fluorescence spectroscopy. Because HAN is very sensitive to the polarity of the microenvironment in which it is confined, we performed a comparative study on the excited-state binding dynamics of HAN using three different bile salts of varying hydrophobicity. The encapsulation of HAN into the bile salt aggregates led to an enhanced fluorescence intensity along with a significant blue shift in the emission maxima that was highly sensitive to the confined microenvironment. Using HAN as a sensitive fluorophore to probe the nanocavities of bile salt aggregates in aqueous solution, we found different mechanisms of probe encapsulation depending on the degree of hydrophobicity of the nanocavities, which results in a difference in the alteration of the spectral behavior. A sharp increase in the fluorescence quantum yield near the cmc was observed, followed by saturation for all three bile salt aggregates. However, maximum fluorescence quantum yield in NaDC aggregates can be rationalized by maximum partitioning of HAN into the more hydrophobic and rigid environment provided by NaDC aggregates. Moreover, the alteration of the spectral behavior with increasing concentration of bile salts strikingly differs from that observed previously in the presence of conventional surfactants. Time-resolved fluorescence measurements further elucidated how the probe molecules interact with the aggregates. Longer fluorescence lifetime and anisotropy values clearly indicate the caging of the tautomers of HAN into the hydrophobic nanocavities of bile salt aggregates. This work further demonstrates the changes in the fluorescence properties of HAN with structural changes of bile salt aggregates induced by the addition of salt and organic cosolvent.


Asunto(s)
Ácidos y Sales Biliares/química , Naftalenos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/química , Procesos Fotoquímicos , Teoría Cuántica , Cloruro de Sodio/química , Solventes/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA