Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 123(1): 329-345, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747361

RESUMEN

My collaboration on the vestibulo-ocular reflex with Bernard Cohen began in 1972. Until 2017, this collaboration included studies of saccades, quick phases of nystagmus, the introduction of the concept of velocity storage, the relationship of velocity storage to motion sickness, primate and human locomotion, and studies of vasovagal syncope. These studies have elucidated the functioning of the vestibuloocular reflex, the locomotor system, the functioning of the vestibulo-sympathetic reflex, and how blood pressure and heart rate are controlled by the vestibular system. Although it is virtually impossible to review all the contributions in detail in a single paper, this article traces a thread of modeling that I brought to the collaboration, which, coupled with Bernie Cohen's expertise in vestibular and sensory-motor physiology and clinical insights, has broadened our understanding of the role of the vestibular system in a wide range of sensory-motor systems. Specifically, the paper traces how the concept of a relaxation oscillator was used to model the slow and rapid phases of ocular nystagmus. Velocity information that drives the slow compensatory eye movements was used to activate the saccadic system that resets the eyes, giving rise to the relaxation oscillator properties and simulated nystagmus as well as predicting the types of unit activity that generated saccades and nystagmic beats. The slow compensatory component of ocular nystagmus was studied in depth and gave rise to the idea that there was a velocity storage mechanism or integrator that not only is a focus for visual-vestibular interaction but also codes spatial orientation relative to gravity as referenced by the otoliths. Velocity storage also contributes to motion sickness when there are visual-vestibular as well as orientation mismatches in velocity storage. The relaxation oscillator concept was subsequently used to model the stance and swing phases of locomotion, how this impacted head and eye movements to maintain gaze in the direction of body motion, and how these were affected by Parkinson's disease. Finally, the relaxation oscillator was used to elucidate the functional form of the systolic and diastolic beats during blood pressure and how vasovagal syncope might be initiated by cerebellar-vestibular malfunction.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Nistagmo Fisiológico/fisiología , Desempeño Psicomotor/fisiología , Reflejo Vestibuloocular/fisiología , Vestíbulo del Laberinto/fisiología , Animales , Humanos
2.
FASEB J ; 27(7): 2564-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23504712

RESUMEN

Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.


Asunto(s)
Presión Sanguínea/fisiología , Fenómenos Fisiológicos Cardiovasculares , Frecuencia Cardíaca/fisiología , Modelos Animales , Aceleración , Animales , Fenómenos Biomecánicos , Estimulación Eléctrica , Humanos , Masculino , Fotopletismografía , Postura/fisiología , Ratas , Ratas Long-Evans , Reflejo/fisiología , Rotación , Sistema Nervioso Simpático/fisiología , Vestíbulo del Laberinto/fisiología
3.
Front Rehabil Sci ; 5: 1331135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486679

RESUMEN

Background: The velocity storage mechanism of the central vestibular system is closely associated with the vestibulo-ocular reflex (VOR), but also contributes to the sense of orientation in space and the perception of self-motion. We postulate that mal de débarquement syndrome (MdDS) is a consequence of inappropriate sensory adaptation of velocity storage. The premise that a maladapted velocity storage may be corrected by spatial readaptation of the VOR has recently been translated into the development of the first effective treatment for MdDS. However, this treatment's initial impact may be reversed by subsequent re-triggering events. Presently, we hypothesized that MdDS symptoms could alternatively be reduced by attenuating the velocity storage contribution in the central vestibular pathways. Methods: Forty-three patients with MdDS (aged 47 ± 14 yo; 36 women) were randomly assigned to two treatment groups and followed for 6 months. The horizontal VOR was tested with chair rotation during laboratory visits, and the strength of velocity storage was quantified with model-based parameters-the time constant (Tc) and the gain of coupling from the vestibular primary afferent signals (g0). To attenuate velocity storage, Group 1 underwent a progressively intensifying series of low-frequency earth-vertical oscillatory rotation coupled to conflicting visual stimuli. Group 2 underwent an established protocol combining head tilts and visual stimulation, designed to correct maladapted spatial orientation but not change the velocity storage strength. The symptom severity was self-rated on an 11-point scale and reported before and up to 6 months after the treatment. Results: In Group 1, velocity storage was modified through reduction of g0 (p < 0.001) but not Tc. The symptom rating was at least halved initially in 43% of Group 1 (p = 0.04), the majority of whom retained a similar level of improvement during the 6-month follow-up period. In Group 2, no systematic change was induced in the parameters of velocity storage strength, as expected. The symptom rating was at least halved initially in 80% of Group 2 (p < 0.001), but paralleling previous findings, symptoms often returned subsequently. Conclusion: Attenuation of velocity storage shows promise as a lasting remedy for MdDS that can complement the VOR readaptation approach.

4.
FASEB J ; 25(11): 3765-74, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21788449

RESUMEN

Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.


Asunto(s)
Aceleración/efectos adversos , Mareo por Movimiento/etiología , Transportes , Humanos , Mareo por Movimiento/fisiopatología , Movimiento
5.
Exp Brain Res ; 220(2): 165-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22660376

RESUMEN

Gain adaptation of the yaw angular vestibular ocular reflex (aVOR) induced in side-down positions has gravity-independent (global) and -dependent (localized) components. When the head oscillation angles are small during adaptation, localized gain changes are maximal in the approximate position of adaptation. Concurrently, polarization vectors of canal-otolith vestibular neurons adapt their orientations during these small-angle adaptation paradigms. Whether there is orientation adaptation with large amplitude head oscillations, when the head is not localized to a specific position, is unknown. Yaw aVOR gains were decreased by oscillating monkeys about a yaw axis in a side-down position in a subject-stationary visual surround for 2 h. Amplitudes of head oscillation ranged from 15° to 180°. The yaw aVOR gain was tested in darkness at 0.5 Hz, with small angles of oscillation (±15°) while upright and in tilted positions. The peak value of the gain change was highly tuned for small angular oscillations during adaptation and significantly broadened with larger oscillation angles during adaptation. When the orientation of the polarization vectors associated with the gravity-dependent component of the neural network model was adapted toward the direction of gravity, it predicted the localized learning for small angles and the broadening when the orientation adaptation was diminished. The model-based analysis suggests that the otolith orientation adaptation plays an important role in the localized behavior of aVOR as a function of gravity and in regulating the relationship between global and localized adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Relojes Biológicos/fisiología , Movimientos de la Cabeza/fisiología , Orientación/fisiología , Reflejo Vestibuloocular/fisiología , Animales , Movimientos Oculares/fisiología , Macaca fascicularis , Modelos Neurológicos , Neuronas/fisiología , Postura/fisiología
6.
Front Integr Neurosci ; 16: 801817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676926

RESUMEN

Perception of the spatial vertical is important for maintaining and stabilizing vertical posture during body motion. The velocity storage pathway of vestibulo-ocular reflex (VOR), which integrates vestibular, optokinetic, and proprioception in the vestibular nuclei vestibular-only (VO) neurons, has spatio-temporal properties that are defined by eigenvalues and eigenvectors of its system matrix. The yaw, pitch and roll eigenvectors are normally aligned with the spatial vertical and corresponding head axes. Misalignment of the roll eigenvector with the head axes was hypothesized to be an important contributor to the oscillating vertigo during MdDS. Based on this, a treatment protocol was developed using simultaneous horizontal opto-kinetic stimulation and head roll (OKS-VOR). This protocol was not effective in alleviating the MdDS pulling sensations. A model was developed, which shows how maladaptation of the yaw eigenvector relative to the head yaw, either forward, back, or side down, could be responsible for the pulling sensation that subjects experience. The model predicted the sometimes counter-intuitive OKS directions that would be most effective in re-adapting the yaw eigenvector to alleviate the pulling sensation in MdDS. Model predictions were consistent with the treatment of 50 patients with a gravitational pulling sensation as the dominant feature. Overall, pulling symptoms in 72% of patients were immediately alleviated after the treatment and lasted for 3 years after the treatment in 58% of patients. The treatment also alleviated the pulling sensation in patients where pulling was not the dominant feature. Thus, the OKS method has a long-lasting effect comparable to that of OKS-VOR readaptation. The study elucidates how the spatio-temporal organization of velocity storage stabilizes upright posture and how maladaptation of the yaw eigenvector generates MdDS pulling sensations. Thus, this study introduces a new way to treat gravitational pull which could be used alone or in combination with previously proposed VOR readaptation techniques.

7.
Exp Brain Res ; 210(3-4): 583-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21340443

RESUMEN

We investigated spatial responses of the aVOR to small and large accelerations in six canal-plugged and lateral canal nerve-sectioned monkeys. The aim was to determine whether there was spatial adaptation after partial and complete loss of all inputs in a canal plane. Impulses of torques generated head thrusts of ≈ 3,000°/s². Smaller accelerations of ≈ 300°/s² initiated the steps of velocity (60°/s). Animals were rotated about a spatial vertical axis while upright (0°) or statically tilted fore-aft up to ± 90°. Temporal aVOR yaw and roll gains were computed at every head orientation and were fit with a sinusoid to obtain the spatial gains and phases. Spatial gains peaked at ≈ 0° for yaw and ≈ 90° for roll in normal animals. After bilateral lateral canal nerve section, the spatial yaw and roll gains peaked when animals were tilted back ≈ 50°, to bring the intact vertical canals in the plane of rotation. Yaw and roll gains were identical in the lateral canal nerve-sectioned monkeys tested with both low- and high-acceleration stimuli. The responses were close to normal for high-acceleration thrusts in canal-plugged animals, but were significantly reduced when these animals were given step stimuli. Thus, high accelerations adequately activated the plugged canals, whereas yaw and roll spatial aVOR gains were produced only by the intact vertical canals after total loss of lateral canal input. We conclude that there is no spatial adaptation of the aVOR even after complete loss of specific semicircular canal input.


Asunto(s)
Adaptación Fisiológica/fisiología , Orientación , Reflejo Vestibuloocular/fisiología , Canales Semicirculares/fisiología , Percepción Espacial/fisiología , Nervio Vestibular/fisiología , Animales , Movimientos Oculares/fisiología , Lateralidad Funcional/fisiología , Macaca fascicularis , Modelos Biológicos , Canales Semicirculares/cirugía , Nervio Vestibular/cirugía
8.
Exp Brain Res ; 210(1): 45-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21374078

RESUMEN

Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008-0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15-20 mmHg) and HR (≈3 beat*s(-1)), followed by a slow recovery over 1-6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s(-1)/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025-0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s(-1)/g (HR) for pitches of 20-90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.


Asunto(s)
Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Síncope Vasovagal/fisiopatología , Vestíbulo del Laberinto/fisiología , Animales , Estimulación Eléctrica , Masculino , Distribución Aleatoria , Ratas , Ratas Long-Evans , Nervio Vago/fisiología
9.
Exp Brain Res ; 210(3-4): 549-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21286691

RESUMEN

To determine whether the COR compensates for the loss of aVOR gain, independent of species, we studied cynomolgus and rhesus monkeys in which all six semicircular canals were plugged. Gains and phases of the aVOR and COR were determined at frequencies ranging from 0.02 to 6 Hz and fit with model-based transfer functions. Following canal plugging in a rhesus monkey, the acute stage aVOR gain was small and there were absent responses to thrusts of yaw rotation. In the chronic state, aVOR behavior was characterized by a cupula/endolymph time constant of ≈ 0.07 s, responding only to high frequencies of head rotation. COR gains were ≈ 0 before surgery but increased to ≈ 0.15 at low frequencies just after surgery; the COR gains increased to ≈ 0.4 over the next 12 weeks. Nine weeks after surgery, the summated aVOR + COR responses compensated for head velocity in space in the 0.5-3 Hz frequency range. The gains and phases continued to improve until the 35th week, where the combined aVOR + COR stabilized with gains of ≈ 0.5-0.6 and the phases were compensatory over all frequencies. Two cynomolgus monkeys operated 3-12 years earlier had similar frequency characteristics of the aVOR and COR. The combined aVOR + COR gains were ≈ 0.4-0.8 with compensatory phases. To achieve gains close to 1.0, other mechanisms may contribute to gaze compensation, especially with the head free. Thus, while there are individual variations in the time of adaptation of the gain and phase parameters, the essential functional organization of the adaption to vestibular lesions is uniform across these species.


Asunto(s)
Adaptación Fisiológica/fisiología , Cuello/fisiología , Reflejo Vestibuloocular/fisiología , Canales Semicirculares/fisiología , Animales , Movimientos Oculares/fisiología , Macaca fascicularis , Macaca mulatta , Modelos Biológicos , Estimulación Física , Canales Semicirculares/cirugía , Factores de Tiempo
10.
Front Neurol ; 12: 631409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776889

RESUMEN

Vasovagal syncope (VVS) or neurogenically induced fainting has resulted in falls, fractures, and death. Methods to deal with VVS are to use implanted pacemakers or beta blockers. These are often ineffective because the underlying changes in the cardiovascular system that lead to the syncope are incompletely understood and diagnosis of frequent occurrences of VVS is still based on history and a tilt test, in which subjects are passively tilted from a supine position to 20° from the spatial vertical (to a 70° position) on the tilt table and maintained in that orientation for 10-15 min. Recently, is has been shown that vasovagal responses (VVRs), which are characterized by transient drops in blood pressure (BP), heart rate (HR), and increased amplitude of low frequency oscillations in BP can be induced by sinusoidal galvanic vestibular stimulation (sGVS) and were similar to the low frequency oscillations that presaged VVS in humans. This transient drop in BP and HR of 25 mmHg and 25 beats per minute (bpm), respectively, were considered to be a VVR. Similar thresholds have been used to identify VVR's in human studies as well. However, this arbitrary threshold of identifying a VVR does not give a clear understanding of the identifying features of a VVR nor what triggers a VVR. In this study, we utilized our model of VVR generation together with a machine learning approach to learn a separating hyperplane between normal and VVR patterns. This methodology is proposed as a technique for more broadly identifying the features that trigger a VVR. If a similar feature identification could be associated with VVRs in humans, it potentially could be utilized to identify onset of a VVS, i.e, fainting, in real time.

11.
J Neurophysiol ; 103(3): 1478-89, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042701

RESUMEN

Gait dysfunction and falling are major sources of disability for patients with advanced Parkinson's disease (PD). It is presently thought that the fundamental defect is an inability to generate normal stride length. Our data suggest, however, that the basic problem in PD gait is an impaired ability to match step frequency to walking velocity. In this study, foot movements of PD and normal subjects were monitored with an OPTOTRAK motion-detection system while they walked on a treadmill at different velocities. PD subjects were also paced with auditory stimuli at different frequencies. PD gait was characterized by step frequencies that were faster and stride lengths that were shorter than those of normal controls. At low walking velocities, PD stepping had a reduced or absent terminal toe lift, which truncated swing phases, producing shortened steps. Auditory pacing was not able to normalize step frequency at these lower velocities. Peak forward toe velocities increased with walking velocity and PD subjects could initiate appropriate foot dynamics during initial phases of the swing. They could not control the foot appropriately in terminal phases, however. Increased treadmill velocity, which matched the natural PD step frequency, generated a second toe lift, normalizing step size. Levodopa increased the bandwidth of step frequencies, but was not as effective as increases in walking velocity in normalizing gait. We postulate that the inability to control step frequency and adjust swing phase dynamics to slower walking velocities are major causes for the gait impairment in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha/fisiopatología , Marcha/fisiología , Trastornos Parkinsonianos/fisiopatología , Estimulación Acústica , Anciano , Algoritmos , Antiparkinsonianos/uso terapéutico , Fenómenos Biomecánicos , Retroalimentación Fisiológica/fisiología , Femenino , Pie/fisiología , Marcha/efectos de los fármacos , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Técnicas In Vitro , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Movimiento/fisiología , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/tratamiento farmacológico , Caminata/fisiología
12.
Exp Brain Res ; 204(2): 207-22, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20535456

RESUMEN

We tested the hypothesis that motion sickness is produced by an integration of the disparity between eye velocity and the yaw-axis orientation vector of velocity storage. Disparity was defined as the magnitude of the cross product between these two vectors. OVAR, which is known to produce motion sickness, generates horizontal eye velocity with a bias level related to velocity storage, as well as cyclic modulations due to re-orientation of the head re gravity. On average, the orientation vector is close to the spatial vertical. Thus, disparity can be related to the bias and tilt angle. Motion sickness sensitivity was defined as a ratio of maximum motion sickness score to the number of revolutions, allowing disparity and motion sickness sensitivity to be correlated. Nine subjects were rotated around axes tilted 10 degrees-30 degrees from the spatial vertical at 30 degrees/s-120 degrees/s. Motion sickness sensitivity increased monotonically with increases in the disparity due to changes in rotational velocity and tilt angle. Maximal motion sickness sensitivity and bias (6.8 degrees/s) occurred when rotating at 60 degrees/s about an axis tilted 30 degrees. Modulations in eye velocity during OVAR were unrelated to motion sickness sensitivity. The data were predicted by a model incorporating an estimate of head velocity from otolith activation, which activated velocity storage, followed by an orientation disparity comparator that activated a motion sickness integrator. These results suggest that the sensory-motor conflict that produces motion sickness involves coding of the spatial vertical by the otolith organs and body tilt receptors and processing of eye velocity through velocity storage.


Asunto(s)
Percepción de Movimiento/fisiología , Mareo por Movimiento/fisiopatología , Reflejo Vestibuloocular/fisiología , Adulto , Mareo/fisiopatología , Movimientos Oculares/fisiología , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Masculino , Náusea/fisiopatología , Nistagmo Fisiológico/fisiología , Orientación/fisiología , Membrana Otolítica/fisiología , Rotación , Percepción Espacial/fisiología , Vestíbulo del Laberinto/fisiología
13.
J Neurophysiol ; 102(5): 2616-26, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19692515

RESUMEN

Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7-15% as animals were tilted from the upright. Thus the unadapted roll aVOR gain has substantial gravitational dependence. Roll gains were also decreased or increased by 0.25 Hz, in- or out-of-phase rotation of the head and the visual surround while animals were prone, supine, upright, or in side-down positions. Gain changes, determined as a function of head tilt, were fit with a sinusoid; the amplitudes represented the amount of the gravity-dependent gain change, and the bias, the gravity-independent gain change. Gravity-dependent gain changes were absent or substantially smaller in roll (approximately 5%) than in yaw (25%) or pitch (17%), whereas gravity-independent gain changes were similar for roll, pitch, and yaw (approximately 20%). Thus the high-frequency roll aVOR gain has an inherent dependence on head orientation re gravity in the unadapted state, which is different from the yaw/pitch aVORs. This inherent gravitational dependence may explain why the adaptive circuits are not active when the head is tilted re gravity during roll aVOR adaptation. These behavioral differences support the idea that there is a fundamental difference in the central organization of canal-otolith convergence of the roll and yaw/pitch aVORs.


Asunto(s)
Gravitación , Orientación/fisiología , Reflejo Vestibuloocular/fisiología , Adaptación Fisiológica , Animales , Procesamiento Automatizado de Datos/métodos , Movimientos Oculares/fisiología , Cabeza/fisiología , Macaca fascicularis , Macaca mulatta , Torsión Mecánica
14.
Exp Brain Res ; 195(4): 553-67, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19458941

RESUMEN

Head movements in a rotating frame of reference are commonly encountered, but their long term effects on the angular vestibulo-ocular reflex (aVOR) are not well understood. To study this, monkeys were oscillated about a naso-occipital (roll) axis for several hours while rotating about a spatial vertical axis (roll-while-rotating, RWR). This induced oscillations in roll and pitch eye velocity and continuous horizontal (yaw) nystagmus. For several hours thereafter, simple roll in darkness induced horizontal nystagmus and pitch and roll oscillations. The rising and falling time constants of the horizontal velocity indicated that the nystagmus arose in velocity storage. The continuous nystagmus was correlated with a phase shift of vertical eye velocity from 90 degrees to 0 degrees re head position. As the phases reverted toward pre-adaptive values, the horizontal velocity declined. Similar yaw nystagmus and pitch and roll velocities were produced by oscillation in roll after adaptation with roll and horizontal optokinetic nystagmus (OKN), but not after adaptation with pitch-while-rotating (PWR). Findings were explained by a model that shifted the roll orientation vector of velocity storage toward the pitch axis during adaptation with RWR and Roll & OKN. This shift produced modulation in vertical eye velocity in the post adaptive state, which was approximately in phase with roll head position, generating horizontal nystagmus. Similar orientation changes to prolonged exposure to complex motion environments may be responsible for producing post-stimulus motion sickness and/or mal de debarquement.


Asunto(s)
Adaptación Biológica/fisiología , Movimientos de la Cabeza/fisiología , Percepción de Movimiento/fisiología , Orientación/fisiología , Reflejo Vestibuloocular/fisiología , Rotación/efectos adversos , Animales , Encéfalo/fisiología , Macaca , Mareo por Movimiento/etiología , Mareo por Movimiento/fisiopatología , Nistagmo Fisiológico/fisiología , Músculos Oculomotores/inervación , Músculos Oculomotores/fisiología , Estimulación Física , Percepción Espacial/fisiología , Vestíbulo del Laberinto/fisiología
15.
Front Integr Neurosci ; 13: 46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555104

RESUMEN

The purpose of this study was to take a new approach in showing how the central nervous system might encode time at the supra-second level using recurrent neural nets (RNNs). This approach utilizes units with a delayed feedback, whose feedback weight determines the temporal properties of specific neurons in the network architecture. When these feedback neurons are coupled, they form a multilayered dynamical system that can be used to model temporal responses to steps of input in multidimensional systems. The timing network was implemented using separate recurrent "Go" and "No-Go" neural processing units to process an individual stimulus indicating the time of reward availability. Outputs from these distinct units on each time step are converted to a pulse reflecting a weighted sum of the separate Go and No-Go signals. This output pulse then drives an integrator unit, whose feedback weight and input weights shape the pulse distribution. This system was used to model empirical data from rodents performing in an instrumental "peak interval timing" task for two stimuli, Tone and Flash. For each of these stimuli, reward availability was signaled after different times from stimulus onset during training. Rodent performance was assessed on non-rewarded trials, following training, with each stimulus tested individually and simultaneously in a stimulus compound. The associated weights in the Go/No-Go network were trained using experimental data showing the mean distribution of bar press rates across an 80 s period in which a tone stimulus signaled reward after 5 s and a flash stimulus after 30 s from stimulus onset. Different Go/No-Go systems were used for each stimulus, but the weighted output of each fed into a final recurrent integrator unit, whose weights were unmodifiable. The recurrent neural net (RNN) model was implemented using Matlab and Matlab's machine learning tools were utilized to train the network using the data from non-rewarded trials. The neural net output accurately fit the temporal distribution of tone and flash-initiated bar press data. Furthermore, a "Temporal Averaging" effect was also obtained when the flash and tone stimuli were combined. These results indicated that the system combining tone and flash responses were not superposed as in a linear system, but that there was a non-linearity, which interacted between tone and flash. In order to achieve an accurate fit to the empirical averaging data it was necessary to implement non-linear "saliency functions" that limited the output signal of each stimulus to the final integrator when the other was co-present. The model suggests that the central nervous system encodes timing generation as a dynamical system whose timing properties are embedded in the connection weights of the system. In this way, event timing is coded similar to the way other sensory-motor systems, such as the vestibulo-ocular and optokinetic systems, which combine sensory inputs from the vestibular and visual systems to generate the temporal aspects of compensatory eye movements.

16.
Exp Brain Res ; 185(1): 121-35, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17952421

RESUMEN

Stepping frequency is tightly coupled to walking velocity during natural locomotion. In a recent model, we demonstrated that walking velocity determines stride frequency, governs the active feedback control of the swing and determines the swing phase dynamics that governs foot movement. Here, we questioned whether the swing phase dynamics reflect independent effects of stride frequency and walking velocity. Foot movements were measured with a motion detection system (Optotrak) while subjects walked at 0.6-2.1 m/s on a treadmill. Stepping frequencies of 1.3-2.8 Hz were generated with pacing cues at each walking velocity. In the 'iso-velocity' condition, peak forward toe velocity during the swing phases was related to walking velocity and did not vary with alterations in stride frequency. In the 'iso-frequency' condition, in contrast, stepping frequency altered the relationship between toe acceleration and toe position in the fore-aft direction. The cycle frequency, main sequence (peak velocity vs. amplitude) relationships, and the shape of the phase-plane trajectories of the swing phases also reflected this relationship. The data were modeled by decoupling stepping frequency from walking velocity, while maintaining active feedback control dependent on frequency. The latter predicted both the dominant shape of the phase plane trajectories and the main sequence relationships. Thus, according to the model, walking velocity and stride frequency are independent central variables that control the dynamics of the swing phases and stepping. The ability to decouple stride frequency from walking velocity may help in navigating over uneven terrain or when executing curved trajectories while maintaining a constant velocity.


Asunto(s)
Marcha/fisiología , Locomoción/fisiología , Equilibrio Postural/fisiología , Caminata/fisiología , Adulto , Femenino , Pie/fisiología , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos
17.
Exp Brain Res ; 185(1): 87-99, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17926026

RESUMEN

Whether ocular orientation to gravity is produced solely by linear acceleration in the horizontal plane of the head or depends on both horizontal and vertical components of the acceleration of gravity is controversial. Here, we compared orienting eye movements of rabbits during head tilt to those produced by centrifugation that generated centripetal acceleration along the naso-occipital (X-), bitemporal (Y-) and vertical (Z-) axes in a constant gravitational field. Sensitivities of ocular counter-pitch and vergence during pitch tilts were approximately 25 degrees /g and approximately 26 degrees /g, respectively, and of ocular counter-roll during roll tilts was approximately 20 degrees /g. During X-axis centripetal acceleration with 1 g of gravity along the Z-axis, pitch and vergence sensitivities were reduced to approximately 13 degrees /g and approximately 16 degrees /g. Similarly, Y-axis acceleration with 1g along the Z-axis reduced the roll sensitivity to approximately 16 degrees /g. Modulation of Z-axis centripetal acceleration caused sensitivities to drop by approximately 6 degrees /g in pitch, approximately 2 degrees /g in vergence, and approximately 5 degrees /g in roll. Thus, the constant 1g acceleration along the Z-axis reduced the sensitivity of ocular orientation to linear accelerations in the horizontal plane. Orienting responses were also modulated by varying the head Z-axis acceleration; the sensitivity of response to Z-axis acceleration was linearly related to the response to static tilt. Although the sign of the Z-axis modulation is opposite in the lateral-eyed rabbit from that in frontal-eyed species, these data provide evidence that the brain uses both the horizontal and the vertical components of acceleration from the otolith organs to determine the magnitude of ocular orientation in response to linear acceleration.


Asunto(s)
Aceleración , Movimientos Oculares/fisiología , Movimientos de la Cabeza/fisiología , Reflejo Vestibuloocular/fisiología , Animales , Orientación/fisiología , Membrana Otolítica/fisiología , Conejos
18.
Bone ; 40(2): 419-24, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16979963

RESUMEN

Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of "catch up" growth. It remains unclear if deficits in bone mass associated with delayed puberty have long-term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague-Dawley rats (25 days) were randomly assigned to one of four groups; (1) short-term control (C-ST), (2) long-term control (C-LT), (3) short-term GnRH antagonist (G-ST) and (4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 microg/day) (Cetrotide, Serono, Inc.) were given intraperitoneally for 18 days (day 25-42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased trabecula number and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (M(Density)) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0 degrees orientation (-13.2%), which measures the longitudinal trabeculae in the proximal tibia. However, the deficit in the G-LT group was in the 45 degrees and 135 degrees orientations. These results suggest that any "catch-up" growth following the cessation of the GnRH-antagonist injection protocol may be directed in trabeculae oriented perpendicular to 0 degrees at the expense of trabeculae in other orientations.


Asunto(s)
Huesos/anatomía & histología , Maduración Sexual , Animales , Densidad Ósea , Desarrollo Óseo , Femenino , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/farmacología , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores LHRH/agonistas , Receptores LHRH/antagonistas & inhibidores
19.
Bone ; 40(2): 544-52, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17049942

RESUMEN

The purpose of this study was to develop a methodology for quantitatively assessing bone quantity and anisotropy based on texture analysis using Gabor wavelets. The wavelet approach has the capability to simultaneously examine the images at low and high resolutions to gain information on both global and detailed local features of the bone image. The program that implemented the texture analysis gave measures of density (M(Density)) and anisotropy (M(Anisotropy)). It also allowed us to examine the texture energy at four orientations (0 degrees , 45 degrees , 90 degrees , 135 degrees) to gain insight about the details of the anisotropy. Analysis of templates of four simulated patterns, which had same number of dots but with differing orientations, demonstrated how the texture-based analysis differentiated between these templates. The measures of M(Anisotropy) discriminated between the four simulated patterns. The M(Density) measures were similar across all patterns. These outcomes matched the design intent of the simulated patterns. We also compared the trabecular bone images obtained from a previous study, in which the right forelimbs of normal female retired breeder beagle dogs (5-7 years old) were cast for 12 months to induce bone loss, using both histomorphometry and texture analysis. Both histomorphometry and the texture analysis detected significant differences in the trabecular bone of the distal metatarsal between the control and disuse groups. Percent trabecular bone (Tb.Ar/T.Ar) and the textural density parameter (M(Density)) were highly correlated (r=0.962). M(Anisotropy) was decreased (3.9%) after the 12-month disuse protocol, but was not significantly different from normal. However, the texture energy values at all orientations (0 degrees , 45 degrees , 90 degrees and 135 degrees) were significantly decreased in the disuse group. Therefore, texture analysis was able to assess anisotropy, which could not be extracted from histomorphometric parameters. We conclude that texture analysis is an effective tool for assessing 2D bone images that yields information regarding the quantity of bone as well as the orientation of the trabecular structure that can augment our ability to discriminate between normal and pathological bone tissue.


Asunto(s)
Huesos del Metacarpo/patología , Animales , Anisotropía , Resorción Ósea/patología , Simulación por Computador , Perros , Femenino , Miembro Anterior , Procesamiento de Imagen Asistido por Computador , Reconocimiento de Normas Patrones Automatizadas
20.
Front Neurol ; 8: 386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861030

RESUMEN

Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA