RESUMEN
BloodSpot is a specialised database integrating gene expression data from acute myeloid leukaemia (AML) patients related to blood cell development and maturation. The database and interface has helped numerous researchers and clinicians to quickly get an overview of gene expression patterns in healthy and malignant haematopoiesis. Here, we present an update to our framework that includes protein expression data of sorted single cells. With this update we also introduce datasets broadly spanning age groups, which many users have requested, with particular interest for researchers studying paediatric leukaemias. The backend of the database has been rewritten and migrated to a cloud-based environment to accommodate the growth, and provide a better user-experience for our many international users. Users can now enjoy faster transfer speeds and a more responsive interface. In conclusion, the continuing popularity of the database and emergence of new data modalities has prompted us to rewrite and futureproof the back-end, including paediatric centric views, as well as single cell protein data, allowing us to keep the database updated and relevant for the years to come. The database is freely available at www.bloodspot.eu.
Asunto(s)
Hematopoyesis , Leucemia Mieloide Aguda , Niño , Humanos , Células Sanguíneas , Diferenciación Celular , Bases de Datos Genéticas , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Proteínas/genéticaRESUMEN
DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis.
Asunto(s)
Carcinogénesis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Proteínas Proto-Oncogénicas/genética , Animales , Proliferación Celular/genética , Dioxigenasas , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Mutación/genética , Translocación Genética/genéticaRESUMEN
The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors that serve to restrict HSC differentiation. In the present work, we identify ETS (E-twenty-six)-related gene (ERG) as a critical factor protecting HSCs from differentiation. Specifically, loss of Erg accelerates HSC differentiation by >20-fold, thus leading to rapid depletion of immunophenotypic and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs.
Asunto(s)
Diferenciación Celular/genética , Células Madre Hematopoyéticas/citología , Proteínas Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Células de la Médula Ósea/fisiología , Adhesión Celular/genética , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Células Cultivadas , Eliminación de Gen , Ratones , Proteínas Oncogénicas/genética , Factores de Transcripción/genética , Regulador Transcripcional ERGRESUMEN
BloodSpot is a gene-centric database of mRNA expression of haematopoietic cells. The web-based interface to the database includes three concomitant levels of visualization for a gene query; foremost is the expression across hematopoietic cell types, second is analysis of survival of Acute Myeloid Leukaemia patients based on gene expression, and lastly, the expression visualized in an interactive developmental tree. With the introduction of single cell data we have now also included an unbiased dimensionality reduction method to show gene expression over the continuum of haematopoiesis. The webserver includes a few select analysis functionalities, like Student's t-test, identification of correlating genes and lookup of whole genetic signatures, with the aim of making generation and testing of hypotheses quick and intuitive. The visualizations have been updated to accommodate new datatypes and the database has been largely expanded with RNA-sequencing datasets, both purified in bulk and at single cell resolution, increasing the number of single samples more than 10 fold, while keeping simplicity in presentation. The database should be of interest for any researcher within leukaemia, haematopoiesis, cellular development, or stem cells. The database is freely available at www.bloodspot.eu.
Asunto(s)
Bases de Datos Genéticas , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia/genética , RNA-Seq , Análisis de la Célula Individual , Separación Celular , Citometría de Flujo , Humanos , Leucemia/metabolismo , ARN Mensajero/metabolismoRESUMEN
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
Asunto(s)
Atlas como Asunto , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Anotación de Secuencia Molecular , Especificidad de Órganos , Línea Celular , Células Cultivadas , Análisis por Conglomerados , Predisposición Genética a la Enfermedad/genética , Células HeLa , Humanos , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción GenéticaRESUMEN
Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare.
Asunto(s)
Biología Computacional/métodos , Elementos de Facilitación Genéticos/genética , Código de Histonas/genética , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Sitios de Unión/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Células HeLa , Células Madre Hematopoyéticas/citología , Células Hep G2 , Humanos , Nucleosomas/genética , Activación TranscripcionalRESUMEN
Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan-Meier analysis and a hierarchical tree depicting the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from six independent studies on acute myeloid leukemia. Furthermore, we have devised a robust sample integration procedure that allows for sensitive comparison of user-supplied patient samples in a well-defined haematopoietic cellular space.
Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Transcripción Genética , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , RatonesRESUMEN
Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C/EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC exhaustion. By combining gene expression analysis with genome-wide assessment of C/EBPα binding and epigenetic configurations, we show that C/EBPα acts to modulate the epigenetic states of genes belonging to molecular pathways important for HSC function. Moreover, our data suggest that C/EBPα acts as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options.
Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Animales , Apoptosis , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Linaje de la Célula , Proliferación Celular , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , RatonesRESUMEN
Dynamic shifts in transcription factor binding are central to the regulation of biological processes by allowing rapid changes in gene transcription. However, very few genome-wide studies have examined how transcription factor occupancy is coordinated temporally in vivo in higher animals. Here, we quantified the genome-wide binding patterns of two key hepatocyte transcription factors, CEBPA and CEBPB (also known as C/EBPalpha and C/EBPbeta), at multiple time points during the highly dynamic process of liver regeneration elicited by partial hepatectomy in mouse. Combining these profiles with RNA polymerase II binding data, we find three temporal classes of transcription factor binding to be associated with distinct sets of regulated genes involved in the acute phase response, metabolic/homeostatic functions, or cell cycle progression. Moreover, we demonstrate a previously unrecognized early phase of homeostatic gene expression prior to S-phase entry. By analyzing the three classes of CEBP bound regions, we uncovered mutually exclusive sets of sequence motifs, suggesting temporal codes of CEBP recruitment by differential cobinding with other factors. These findings were validated by sequential ChIP experiments involving a panel of central transcription factors and/or by comparison to external ChIP-seq data. Our quantitative investigation not only provides in vivo evidence for the involvement of many new factors in liver regeneration but also points to similarities in the circuitries regulating self-renewal of differentiated cells. Taken together, our work emphasizes the power of global temporal analyses of transcription factor occupancy to elucidate mechanisms regulating dynamic biological processes in complex higher organisms.
Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Genes cdc , Homeostasis/genética , Regeneración Hepática/genética , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Sitios de Unión , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Transcripción GenéticaRESUMEN
Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy, using expression profiles from normal stem/progenitor cells, and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs normal method (CvN method) to be superior to conventional methods in stratifying AML patients with aberrant karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.
Asunto(s)
Biomarcadores de Tumor/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Western Blotting , Estudios de Casos y Controles , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de SupervivenciaRESUMEN
The HemaExplorer (http://servers.binf.ku.dk/hemaexplorer) is a curated database of processed mRNA Gene expression profiles (GEPs) that provides an easy display of gene expression in haematopoietic cells. HemaExplorer contains GEPs derived from mouse/human haematopoietic stem and progenitor cells as well as from more differentiated cell types. Moreover, data from distinct subtypes of human acute myeloid leukemia is included in the database allowing researchers to directly compare gene expression of leukemic cells with those of their closest normal counterpart. Normalization and batch correction lead to full integrity of the data in the database. The HemaExplorer has comprehensive visualization interface that can make it useful as a daily tool for biologists and cancer researchers to assess the expression patterns of genes encountered in research or literature. HemaExplorer is relevant for all research within the fields of leukemia, immunology, cell differentiation and the biology of the haematopoietic system.
Asunto(s)
Bases de Datos Genéticas , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Humanos , Internet , Leucemia Mieloide Aguda/metabolismo , Ratones , ARN Mensajero/metabolismo , TranscriptomaRESUMEN
MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno-informatics methods to allow the simulation of the cardinal events of the antigenic recognition, going from single peptides to whole proteomes. The recognition process accounts for B cell-epitopes prediction through Parker-scale affinity estimation, class I and II HLA peptide prediction and binding through position-specific scoring matrices based on information from known HLA epitopes prediction tools, and TCR binding to HLA-peptide complex calculated as the averaged sum of a residue-residue contact potential. These steps are executed for all lymphocytes agents encountering the antigen in a wide-reaching Monte Carlo simulation. AVAILABILITY: http://www.cbs.dtu.dk/services/C-ImmSim-10.1/
Asunto(s)
Simulación por Computador , Sistema Inmunológico , Internet , Modelos Biológicos , Mapeo Epitopo/métodos , Humanos , Linfocitos , Sistemas en Línea , Posición Específica de Matrices de Puntuación , Estadística como AsuntoRESUMEN
Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.
Asunto(s)
Células Madre Hematopoyéticas , Ribosomas , Eritrocitos/metabolismo , Eritropoyesis , Células Madre Hematopoyéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismoRESUMEN
Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies. The ImmunoGrid portal offers access to educational simulators where previously defined cases can be displayed, and to research simulators that allow the development of new, or tuning of existing, computational models. The portal is accessible at
Asunto(s)
Sistemas de Computación , Diseño de Fármacos , Sistema Inmunológico/fisiología , Modelos Biológicos , Vacunas , Biología Computacional/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Humanos , Complejo Mayor de Histocompatibilidad , Integración de SistemasRESUMEN
Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.
Asunto(s)
Proteómica/métodos , Análisis de la Célula Individual/métodos , Humanos , Leucemia Mieloide Aguda , Espectrometría de Masas , Células Madre Neoplásicas , Proteoma/metabolismo , ARN , Flujo de TrabajoAsunto(s)
Bases de Datos Genéticas , Expresión Génica , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Internet , Interfaz Usuario-Computador , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/genética , Salud , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Almacenamiento y Recuperación de la Información/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologíaRESUMEN
Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that "non-mutated" splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This has led to the identification of the splicing regulator RBM25 as a novel tumor suppressor. In multiple human leukemic cell lines, knockdown of RBM25 promotes proliferation and decreases apoptosis. Mechanistically, we show that RBM25 controls the splicing of key genes, including those encoding the apoptotic regulator BCL-X and the MYC inhibitor BIN1. This mechanism is also operative in human AML patients where low RBM25 levels are associated with high MYC activity and poor outcome. Thus, we demonstrate that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Experimental/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Leucemia Mieloide Aguda/mortalidad , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Empalme del ARN , Proteínas Supresoras de Tumor/metabolismoRESUMEN
BACKGROUND: Patients with haematological malignancies are often vitamin C deficient, and vitamin C is essential for the TET-induced conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), the first step in active DNA demethylation. Here, we investigate whether oral vitamin C supplementation can correct vitamin C deficiency and affect the 5hmC/5mC ratio in patients with myeloid cancers treated with DNA methyltransferase inhibitors (DNMTis). RESULTS: We conducted a randomized, double-blinded, placebo-controlled pilot trial (NCT02877277) in Danish patients with myeloid cancers performed during 3 cycles of DNMTi-treatment (5-azacytidine, 100 mg/m2/d for 5 days in 28-day cycles) supplemented by oral dose of 500 mg vitamin C (n = 10) or placebo (n = 10) daily during the last 2 cycles. Fourteen patients (70%) were deficient in plasma vitamin C (< 23 µM) and four of the remaining six patients were taking vitamin supplements at inclusion. Global DNA methylation was significantly higher in patients with severe vitamin C deficiency (< 11.4 µM; 4.997 vs 4.656% 5mC relative to deoxyguanosine, 95% CI [0.126, 0.556], P = 0.004). Oral supplementation restored plasma vitamin C levels to the normal range in all patients in the vitamin C arm (mean increase 34.85 ± 7.94 µM, P = 0.0004). We show for the first time that global 5hmC/5mC levels were significantly increased in mononuclear myeloid cells from patients receiving oral vitamin C compared to placebo (0.037% vs - 0.029%, 95% CI [- 0.129, - 0.003], P = 0.041). CONCLUSIONS: Normalization of plasma vitamin C by oral supplementation leads to an increase in the 5hmC/5mC ratio compared to placebo-treated patients and may enhance the biological effects of DNMTis. The clinical efficacy of oral vitamin C supplementation to DNMTis should be investigated in a large randomized, placebo-controlled clinical trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02877277 . Registered on 9 August 2016, retrospectively registered.
Asunto(s)
Ácido Ascórbico/administración & dosificación , Azacitidina/administración & dosificación , Metilación de ADN/efectos de los fármacos , Leucemia Mieloide/terapia , Síndromes Mielodisplásicos/terapia , Administración Oral , Anciano , Anciano de 80 o más Años , Ácido Ascórbico/sangre , Ácido Ascórbico/farmacología , Azacitidina/farmacología , Islas de CpG/efectos de los fármacos , Dinamarca , Método Doble Ciego , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Leucemia Mieloide/sangre , Leucemia Mieloide/genética , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/genética , Proyectos PilotoRESUMEN
B cell development depends on the coordinated expression and cooperation of several transcription factors. Here we show that the transcription factor ETS-related gene (ERG) is crucial for normal B cell development and that its deletion results in a substantial loss of bone marrow B cell progenitors and peripheral B cells, as well as a skewing of splenic B cell populations. We find that ERG-deficient B lineage cells exhibit an early developmental block at the pre-B cell stage and proliferate less. The cells fail to express the immunoglobulin heavy chain due to inefficient V-to-DJ recombination, and cells that undergo recombination display a strong bias against incorporation of distal V gene segments. Furthermore, antisense transcription at PAX5-activated intergenic repeat (PAIR) elements, located in the distal region of the Igh locus, depends on ERG. These findings show that ERG serves as a critical regulator of B cell development by ensuring efficient and balanced V-to-DJ recombination.
Asunto(s)
Linfocitos B/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Humanos , Regulador Transcripcional ERG/metabolismoRESUMEN
The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.