Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 197: 106536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763444

RESUMEN

CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Lipofuscinosis Ceroideas Neuronales , Fenotipo , Proteínas de Pez Cebra , Pez Cebra , Animales , Autofagia/fisiología , Autofagia/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales Modificados Genéticamente , Trehalosa/farmacología
2.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36768458

RESUMEN

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Asunto(s)
Sitio Alostérico , Humanos , Ligandos , Receptores de Cannabinoides , Regulación Alostérica
3.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570616

RESUMEN

The field of synthetic methodology plays a pivotal role in the quest for safe and effective drugs [...].

4.
Molecules ; 27(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35566369

RESUMEN

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent ß-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.


Asunto(s)
Cannabinoides , Neuroblastoma , Agonistas de Receptores de Cannabinoides/química , Supervivencia Celular , Humanos , Neuroblastoma/tratamiento farmacológico , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
5.
Cancer Cell Int ; 21(1): 318, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167552

RESUMEN

The study describes the current state of knowledge on nanotechnology and its utilization in medicine. The focus in this manuscript was on the properties, usage safety, and potentially valuable applications of chitosan-based nanomaterials. Chitosan nanoparticles have high importance in nanomedicine, biomedical engineering, discovery and development of new drugs. The manuscript reviewed the new studies regarding the use of chitosan-based nanoparticles for creating new release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity of drugs. Nowadays, effective cancer treatment is a global problem, and recent advances in nanomedicine are of great importance. Special attention was put on the application of chitosan nanoparticles in developing new system for anticancer drug delivery. Pre-clinical and clinical studies support the use of chitosan-based nanoparticles in nanomedicine. This manuscript overviews the last progresses regarding the utilization, stability, and bioavailability of drug nanoencapsulation with chitosan and their safety.

6.
Bioorg Chem ; 107: 104572, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418316

RESUMEN

Mitochondria play a key role for deciding fate of cells and thus are considered an attractive target for pharmacological interventions focused on containment of myocardial ischemia/reperfusion (I/R) injury. Notably, the activation of mitochondrial potassium (mitoK) channels produces a mild depolarization of mitochondrial membrane, that contributes to reduce the driving force to calcium uptake and prevents the formation of mitochondrial transition membrane pore (MPTP); these events underlie anti-ischemic cardioprotection. However, an ideal mitoK channel opener should possess the fundamental requirement to be delivered at mitochondrial level; therefore, to improve the mitochondrial delivery of a previously characterized spirocyclic benzopyrane F81, new compounds have been developed. The three original triphenylphosphonium (TPP+)-derivatives of F81 (1-3), were evaluated for their cardioprotective activity on both isolated cardiac mitochondria and cardiac H9c2 cell line. Compound 1 was further investigated in an in vivo infarct model. This work confirms that the TPP+ strategy applied to mitoKATP openers could foster mitochondrial delivery and enhance the cardioprotective effects of mitochondrial activators of potassium channels.


Asunto(s)
Cardiotónicos/síntesis química , Canales de Potasio/metabolismo , Animales , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Compuestos Organofosforados/química , Canales de Potasio/agonistas , Ratas , Ratas Wistar , Compuestos de Espiro/química
7.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800546

RESUMEN

Thyromimetics, whose physicochemical characteristics are analog to thyroid hormones (THs) and their derivatives, are promising candidates as novel therapeutics for neurodegenerative and metabolic pathologies. In particular, sobetirome (GC-1), one of the initial halogen-free thyromimetics, and newly synthesized IS25 and TG68, with optimized ADME-Tox profile, have recently attracted attention owing to their superior therapeutic benefits, selectivity, and enhanced permeability. Here, we further explored the functional capabilities of these thyromimetics to inhibit transthyretin (TTR) amyloidosis. TTR is a homotetrameric transporter protein for THs, yet it is also responsible for severe amyloid fibril formation, which is facilitated by tetramer dissociation into non-native monomers. By combining nuclear magnetic resonance (NMR) spectroscopy, computational simulation, and biochemical assays, we found that GC-1 and newly designed diphenyl-methane-based thyromimetics, namely IS25 and TG68, are TTR stabilizers and efficient suppressors of TTR aggregation. Based on these observations, we propose the novel potential of thyromimetics as a multi-functional therapeutic molecule for TTR-related pathologies, including neurodegenerative diseases.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Compuestos de Bifenilo/química , Metano/química , Hormonas Tiroideas/farmacología , Acetatos/farmacología , Amiloide/metabolismo , Benzotiazoles/química , Diseño de Fármacos , Humanos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Permeabilidad , Fenoles/farmacología , Prealbúmina/metabolismo , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Hormonas Tiroideas/química
8.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884910

RESUMEN

Activation of thyroid hormone receptor ß (THRß) has shown beneficial effects on metabolic alterations, including non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effect of TG68, a novel THRß agonist, on fatty liver accumulation and liver injury in mice fed a high-fat diet (HFD). C57BL/6 mice fed HFD for 17 or 18 weeks, a time when all mice developed massive steatohepatitis, were then given TG68 at a dose of 9.35 or 2.8 mg/kg for 2 or 3 weeks, respectively. As a reference compound, the same treatment was adopted using equimolar doses of MGL-3196, a selective THRß agonist currently in clinical phase III. The results showed that treatment with TG68 led to a reduction in liver weight, hepatic steatosis, serum transaminases, and circulating triglycerides. qRT-PCR analyses demonstrated activation of THRß, as confirmed by increased mRNA levels of Deiodinase-1 and Malic enzyme-1, and changes in lipid metabolism, as revealed by increased expression of Acyl-CoA Oxidase-1 and Carnitine palmitoyltransferase-1. The present results showed that this novel THRß agonist exerts an anti-steatogenic effect coupled with amelioration of liver injury in the absence of extra-hepatic side effects, suggesting that TG68 may represent a useful tool for the treatment of NAFLD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Profármacos/administración & dosificación , Piridazinas/administración & dosificación , Receptores beta de Hormona Tiroidea/agonistas , Uracilo/análogos & derivados , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Profármacos/farmacología , Piridazinas/farmacología , Transaminasas/sangre , Triglicéridos/sangre , Uracilo/administración & dosificación , Uracilo/farmacología
9.
Phytother Res ; 34(9): 2140-2158, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32159263

RESUMEN

The family Arecaceae includes 181 genera and 2,600 species with a high diversity in physical characteristics. Areca plants, commonly palms, which are able to grow in nearly every type of habitat, prefer tropical and subtropical climates. The most studied species Areca catechu L. contains phytochemicals as phenolics and alkaloids with biological properties. The phenolics are mainly distributed in roots followed by fresh unripe fruits, leaves, spikes, and veins, while the contents of alkaloids are in the order of roots, fresh unripe fruits, spikes, leaves, and veins. This species has been reputed to provide health effects on the cardiovascular, respiratory, nervous, metabolic, gastrointestinal, and reproductive systems. However, in many developing countries, quid from this species has been associated with side effects, which include the destruction of the teeth, impairment of oral hygiene, bronchial asthma, or oral cancer. Despite these side effects, which are also mentioned in this work, the present review collects the main results of biological properties of the phytochemicals in A. catechu. This study emphasizes the in vitro and in vivo antioxidant, antimicrobial, anticancer, and clinical effectiveness in humans. In this sense, A. catechu have demonstrated effectiveness in several reports through in vitro and in vivo experiments on disorders such as antimicrobial, antioxidant, or anticancer. Moreover, our findings demonstrate that this species presents clinical effectiveness on neurological disorders. Hence, A. catechu extracts could be used as a bioactive ingredient for functional food, nutraceuticals, or cosmeceuticals. However, further studies, especially extensive and comprehensive clinical trials, are recommended for the use of Areca in the treatment of diseases.


Asunto(s)
Agricultura , Areca/fisiología , Investigación Biomédica , Alimentos , Fitoterapia , Agricultura/tendencias , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Areca/química , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Granjas , Humanos , Fenoles/química , Fenoles/farmacología , Fitoquímicos/efectos adversos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoterapia/métodos , Fitoterapia/tendencias , Hojas de la Planta/química
10.
Molecules ; 25(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110992

RESUMEN

3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition. This effect was concomitant with down-regulation of autophagy-related genes, including Hif1α, p53 and mTOR. Remarkably, when mTOR was inhibited a concomitant activation of autophagy and UP took place in U87MG cells. Since both compounds activate autophagy, which is known to sustain long term potentiation (LTP) in the entorhinal cortex (EC) and counteracting AD pathology, further electrophysiological studies were carried out in a transgenic mouse model of AD. We found that SG-2 was able to rescue LTP with an efficacy comparable to T1AM, further underlying its potential as a novel pleiotropic agent for neurodegenerative disorders treatment.


Asunto(s)
Gangliósidos/farmacología , Fármacos Neuroprotectores/farmacología , Sirtuinas/metabolismo , Tironinas/farmacología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Corteza Entorrinal/patología , Gangliósidos/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Transgénicos , Fármacos Neuroprotectores/química , Serina-Treonina Quinasas TOR/metabolismo , Tironinas/química
12.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434215

RESUMEN

3-Iodothyronamine (T1AM) and its synthetic analog SG-2 are rapidly emerging as promising drivers of cellular metabolic reprogramming. Our recent research indicates that in obese mice a sub-chronic low dose T1AM treatment increased lipolysis, associated with significant weight loss independent of food consumption. The specific cellular mechanism of T1AM's lipolytic effect and its site of action remains unknown. First, to study the mechanism used by T1AM to gain entry into cells, we synthesized a fluoro-labeled version of T1AM (FL-T1AM) by conjugating it to rhodamine (TRITC) and analyzed its cellular uptake and localization in 3T3-L1 mouse adipocytes. Cell imaging using confocal microscopy revealed a rapid intercellular uptake of FL-T1AM into mitochondria without localization to the lipid droplet or nucleus of mature adipocytes. Treatment of 3T3-L1 adipocytes with T1AM and SG-2 resulted in decreased lipid accumulation, the latter showing a significantly higher potency than T1AM (10 µM vs. 20 µM, respectively). We further examined the effects of T1AM and SG-2 on liver HepG2 cells. A significant decrease in lipid accumulation was observed in HepG2 cells treated with T1AM or SG-2, due to increased lipolytic activity. This was confirmed by accumulation of glycerol in the culture media and through activation of the AMPK/ACC signaling pathways.


Asunto(s)
Tironinas/farmacología , Células 3T3-L1 , Animales , Reprogramación Celular/efectos de los fármacos , Glicerol/metabolismo , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
13.
Bioorg Med Chem ; 26(3): 543-550, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310862

RESUMEN

Alzheimer's disease (AD), a complex chronic progressive central nervous system degenerative disease and a public health problem of the world, often characters cognitive dysfunction accompaning aggression and depression, and may lead to death. More attentions should be paid on it because there is no modified strategy against AD till now. AD is featured with the loss of cholinergic neurons, the amyloid-beta peptide (Aß) plaques and the neurofibrillary tangles and several hypotheses were established to explain the pathogenesis of AD. Hydroxycinnamic acids, including caffeic acid (CA) and ferulic acid (FA) are widely distributed in natural plants and fruits. CA and FA exert various pharmacological activities, including anti-inflammatory, antioxidant, neuroprotection, anti-amyloid aggregation and so on. All these pharmacological activities are associated with the treatment of AD. Here we summarized the pharmacological activities of CA and FA, and their hybrids as multi-target-directed ligands (MTDLs) against AD. The future application of CA and FA was also discussed, hoping to provide beneficial information for the development of CA- and FA-based MTDLs against AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Cumáricos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Humanos , Ligandos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos
14.
Bioorg Med Chem Lett ; 27(21): 4812-4816, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993050

RESUMEN

A novel series of variously substituted N-[3-(9H-carbazol-9-yl)-2-hydroxypropyl]-arylsulfonamides has been synthesized and assayed for ß-Secretase (BACE1) inhibitory activity. BACE1 is a widely recognized drug target for the prevention and treatment of Alzheimer's Disease (AD). The introduction of benzyl substituents on the nitrogen atom of the arylsulfonamide moiety has so far led to the best results, with three derivatives showing IC50 values ranging from 1.6 to 1.9 µM. Therefore, a significant improvement over the previously reported series of N-carboxamides (displaying IC50's ≥ 2.5 µM) has been achieved, thus suggesting an active role of the sulfonamido-portion in the inhibition process. Preliminary molecular modeling studies have been carried out to rationalize the observed structure-activity relationships.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Carbazoles/química , Inhibidores de Proteasas/química , Sulfonamidas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Sitios de Unión , Carbazoles/metabolismo , Carbazoles/uso terapéutico , Dominio Catalítico , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , Relación Estructura-Actividad
15.
Bioorg Med Chem Lett ; 25(4): 807-10, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25597007

RESUMEN

A novel series of tacrine derivatives were designed and synthesized by combining caffeic acid (CA), ferulic acid (FA) and lipoic acid (LA) with tacrine. The antioxidant study revealed that all the hybrids have much more antioxidant capacities compared to CA. Among these compounds, 1b possessed a good ability to inhibit the ß-amyloid protein (Aß) self-aggregation, sub-micromole acetylcholinesterase (AChE)/butyrylcholinesterase (BuChE) inhibitory, modest BACE1 inhibitory. Moreover, compound 1b also was a DPPH radical scavenger and copper chelatory as well as had potent neuroprotective effects against glutamate-induced cell death with low toxicity in HT22 cells. Our findings suggest that the compound 1b might be a promising lead multi-targeted ligand and worthy of further developing for the therapy of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Tacrina/análogos & derivados , Tacrina/farmacología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Ácidos Cafeicos/química , Línea Celular , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Ácidos Cumáricos/química , Diseño de Fármacos , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Tacrina/síntesis química , Ácido Tióctico/química
16.
Bioorg Med Chem ; 23(3): 422-8, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25577707

RESUMEN

Although there is a significant effort in the discovery of effective therapies to contrast both the pathological endocrine and metabolic aspects of diabetes and the endothelial dysfunction associated with this disease, no hypoglycemic drug has been proven to defeat the cardiovascular complications associated with type II diabetes. The aim of this research was to design new compounds exhibiting a double profile of hypoglycemic agents/NO-donors. The synthesis of molecules obtained by the conjunction of NO-donor moieties with two oral insulin-secretagogue drugs (repaglinide and nateglinide) was reported. NO-mediated vasorelaxing effects of the synthesized compounds were evaluated by functional tests on isolated endothelium-denuded rat aortic rings. The most potent molecule (4) was tested to evaluate the hypoglycemic and the anti-ischemic cardioprotective activities. This study indicates that 4 should represent a new insulin-secretagogue/NO-donor prodrug with an enhanced cardiovascular activity, which may contrast the pathological aspects of diabetes and endowed of cardioprotective activity.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Donantes de Óxido Nítrico/síntesis química , Donantes de Óxido Nítrico/farmacología , Animales , Cardiotónicos/síntesis química , Cardiotónicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/complicaciones , Modelos Animales de Enfermedad , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratas , Ratas Wistar
17.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765015

RESUMEN

Oligodendrocytes and their precursors are the cells responsible for developmental myelination and myelin repair during adulthood. Their differentiation and maturation processes are regulated by a complex molecular machinery driven mainly by triiodothyronine (T3), the genomic active form of thyroid hormone, which binds to thyroid hormone receptors (TRs), regulating the expression of target genes. Different molecular tools have been developed to mimic T3 action in an attempt to overcome the myelin repair deficit that underlies various central nervous system pathologies. In this study, we used a well-established in vitro model of neural stem cell-derived oligodendrocyte precursor cells (OPCs) to test the effects of two compounds: the TRß1 ligand IS25 and its pro-drug TG68. We showed that treatment with TG68 induces OPC differentiation/maturation as well as both the natural ligand and the best-known TRß1 synthetic ligand, GC-1. We then described that, unlike T3, TG68 can fully overcome the cytokine-mediated oligodendrocyte differentiation block. In conclusion, we showed the ability of a new synthetic compound to stimulate OPC differentiation and overcome inflammation-mediated pathological conditions. Further studies will clarify whether the compound acts as a pro-drug to produce the TRß1 ligand IS25 or if its action is mediated by secondary mechanisms such as AMPK activation.

18.
Front Oncol ; 13: 1127517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910628

RESUMEN

Introduction: Several lines of evidence suggest that the thyroid hormone signaling pathway is altered in patients with NAFLD and that pharmacological strategies to target the thyroid hormone/thyroid hormone nuclear receptor axis (TH/THR) in the liver may exert beneficial effects. In this study, we investigated the effect of TG68, a novel THRß agonist, on rat hepatic fat accumulation and NAFLD-associated hepatocarcinogenesis. Methods: Male rats given a single dose of diethylnitrosamine (DEN) and fed a high fat diet (HFD) were co-treated with different doses of TG68. Systemic and hepatic metabolic parameters, immunohistochemistry and hepatic gene expression were determined to assess the effect of TG68 on THRß activation. Results: Irrespectively of the dose, treatment with TG68 led to a significant reduction in liver weight, hepatic steatosis, circulating triglycerides, cholesterol and blood glucose. Importantly, a short exposure to TG68 caused regression of DEN-induced preneoplastic lesions associated with a differentiation program, as evidenced by a loss of neoplastic markers and reacquisition of markers of differentiated hepatocytes. Finally, while an equimolar dose of the THRß agonist Resmetirom reduced hepatic fat accumulation, it did not exert any antitumorigenic effect. Discussion: The use of this novel thyromimetic represents a promising therapeutic strategy for the treatment of NAFLD-associated hepatocarcinogenesis.

19.
Bioorg Med Chem Lett ; 22(20): 6498-502, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22981331

RESUMEN

A novel series of tacrine-caffeic acid hybrids (5a-f) were designed and synthesized by combining caffeic acid (CA) with tacrine. The antioxidant study revealed that all the hybrids have much more antioxidant capacities compared to CA. Among these compounds, 5e showed the highest selectivity in inhibiting acetylcholinesterase (AChE) over butyrylcholinesterase (BuChE). Enzyme kinetic study had suggested that 5e binds to both catalytic (CAS) and peripheral anionic sites (PAS) of AChE. Moreover, compound 5e also inhibited self- or AChE-induced ß-amyloid(1-40) aggregation, as well as had potent neuroprotective effects against H(2)O(2)- and glutamate- induced cell death with low toxicity in HT22 cells.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Tacrina/química , Tacrina/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Butirilcolinesterasa/metabolismo , Ácidos Cafeicos/síntesis química , Muerte Celular/efectos de los fármacos , Línea Celular , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Peróxido de Hidrógeno/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Tacrina/síntesis química
20.
Int J Mol Sci ; 13(6): 6924-6943, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22837672

RESUMEN

P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as "true" P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Diseño de Fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Algoritmos , Área Bajo la Curva , Biología Computacional , Árboles de Decisión , Activación Enzimática , Humanos , Ligandos , Modelos Estadísticos , Permeabilidad , Transporte de Proteínas , Xenobióticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA