Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 118(1): 13, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988697

RESUMEN

The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Acoplamiento Excitación-Contracción , Señalización del Calcio , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo
2.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839322

RESUMEN

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/administración & dosificación , Animales , Proteínas de Unión al Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Inyecciones Subcutáneas , Ligandos , Masculino , Ratones , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Resultado del Tratamiento , Función Ventricular
3.
Nucleic Acids Res ; 47(13): e75, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30982889

RESUMEN

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Regulación de la Expresión Génica , Transgenes , Regiones no Traducidas 3'/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Proteína 9 Asociada a CRISPR/biosíntesis , Dependovirus/genética , Activación Enzimática , Inducción Enzimática , Genes Reporteros , Células HEK293 , Células HeLa , Hepatocitos/metabolismo , Humanos , Luciferasas de Renilla/análisis , Luciferasas de Renilla/genética , MicroARNs , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/antagonistas & inhibidores
4.
Mol Ther ; 24(6): 1050-1061, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27018516

RESUMEN

Vectors mediating strong, durable, and tissue-specific transgene expression are mandatory for safe and effective gene therapy. In settings requiring systemic vector administration, the availability of suited vectors is extremely limited. Here, we present a strategy to select vectors with true specificity for a target tissue from random peptide libraries displayed on adeno-associated virus (AAV) by screening the library under circulation conditions in a murine model. Guiding the in vivo screening by next-generation sequencing, we were able to monitor the selection kinetics and to determine the right time point to discontinue the screening process. The establishment of different rating scores enabled us to identify the most specifically enriched AAV capsid candidates. As proof of concept, a capsid variant was selected that specifically and very efficiently delivers genes to the endothelium of the pulmonary vasculature after intravenous administration. This technical approach of selecting target-specific vectors in vivo is applicable to any given tissue of interest and therefore has broad implications in translational research and medicine.


Asunto(s)
Cápside/metabolismo , Dependovirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pulmón/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/metabolismo , Terapia Genética , Vectores Genéticos/administración & dosificación , Ratones , Especificidad de Órganos , Biblioteca de Péptidos , Transducción Genética
5.
Biochim Biophys Acta ; 1853(11 Pt A): 2870-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260012

RESUMEN

The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Mutación Missense , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Remodelación Ventricular , Sustitución de Aminoácidos , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Miocardio/patología , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Sarcómeros/enzimología , Sarcómeros/genética
6.
Mol Ther ; 22(12): 2038-2045, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25023328

RESUMEN

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


Asunto(s)
Dependovirus/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Proteína Fosfatasa 1/genética , Animales , Dependovirus/clasificación , Dependovirus/enzimología , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/administración & dosificación , Insuficiencia Cardíaca/fisiopatología , Humanos , Inyecciones Intraarteriales , Proteína Fosfatasa 1/metabolismo , Volumen Sistólico , Porcinos
7.
Mol Ther ; 20(1): 73-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21915102

RESUMEN

Adeno-associated virus (AAV)-based vectors are promising gene delivery vehicles for human gene transfer. One significant obstacle to AAV-based gene therapy is the high prevalence of neutralizing antibodies in humans. Until now, it was thought that, except for nonhuman primates, pre-existing neutralizing antibodies are not a problem in small or large animal models for gene therapy. Here, we demonstrate that sera of several animal models of cardiovascular diseases harbor pre-existing antibodies against the cardiotropic AAV serotypes AAV1, AAV6, and AAV9 and against AAV2. The neutralizing antibody titers vary widely both between species and between serotypes. Of all species tested, rats displayed the lowest levels of neutralizing antibodies. Surprisingly, naive mice obtained directly from commercial vendors harbored neutralizing antibodies. Of the large animal models tested, the neutralization of AAV6 transduction by dog sera was especially pronounced. Sera of sheep and rabbits showed modest neutralization of AAV transduction whereas porcine sera strongly inhibited transduction by all AAV serotypes and displayed the largest variation between individual animals. Importantly, neutralizing antibody titers as low as 1/4 completely prevented in vivo transduction by AAV9 in rats. Our results suggest that prescreening of animals for neutralizing antibodies will be important for future gene transfer experiments in these animal models.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Dependovirus/inmunología , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , Dependovirus/clasificación , Perros , Técnicas de Transferencia de Gen , Vectores Genéticos/inmunología , Células HEK293 , Humanos , Masculino , Ratones , Pruebas de Neutralización , Conejos , Ratas , Ratas Sprague-Dawley , Serotipificación , Ovinos/inmunología , Porcinos/inmunología , Transducción Genética
8.
Mol Ther ; 20(3): 565-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22215018

RESUMEN

SERCA2a gene therapy improves contractile and energetic function of failing hearts and has been shown to be associated with benefits in clinical outcomes, symptoms, functional status, biomarkers, and cardiac structure in a phase 2 clinical trial. In an effort to enhance the efficiency and homogeneity of gene uptake in cardiac tissue, we examined the effects of nitroglycerin (NTG) in a porcine model following AAV1.SERCA2a gene delivery. Three groups of Göttingen minipigs were assessed: (i) group A: control intracoronary (IC) AAV1.SERCA2a (n = 6); (ii) group B: a single bolus IC injection of NTG (50 µg) immediately before administration of intravenous (IV) AAV1.SERCA2a (n = 6); and (iii) group C: continuous IV NTG (1 µg/kg/minute) during the 10 minutes of AAV1.SERCA2a infusion (n = 6). We found that simultaneous IV infusion of NTG and AAV1.SERCA2a resulted in increased viral transduction efficiency, both in terms of messenger RNA (mRNA) as well as SERCA2a protein levels in the whole left ventricle (LV) compared to control animals. On the other hand, IC NTG pretreatment did not result in enhanced gene transfer efficiency, mRNA or protein levels when compared to control animals. Importantly, the transgene expression was restricted to the heart tissue. In conclusion, we have demonstrated that IV infusion of NTG significantly improves cardiac gene transfer efficiency in porcine hearts.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Miocardio/metabolismo , Nitroglicerina/administración & dosificación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Expresión Génica , Hemodinámica/efectos de los fármacos , Infusiones Intraarteriales , Infusiones Intravenosas , Masculino , Miocitos Cardíacos/metabolismo , Nitroglicerina/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Porcinos , Transducción Genética
9.
Nat Commun ; 14(1): 3714, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349314

RESUMEN

Dilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart. We employ a combination of the viral vector AAVMYO with superior targeting specificity of heart muscle tissue and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20, which cause aggressive dilated cardiomyopathy. Using optimized conditions, we repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we have generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restores the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reach wild-type levels. Single-nuclei RNA sequencing uncovers restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing reveals no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.


Asunto(s)
Cardiomiopatía Dilatada , Ratones , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/terapia , Cardiomiopatía Dilatada/metabolismo , Edición Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Miocardio/metabolismo , Mutación , Miocitos Cardíacos/metabolismo
10.
J Vis Exp ; (188)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36342179

RESUMEN

Gene delivery vectors derived from Adeno-associated virus (AAV) are one of the most promising tools for the treatment of genetic diseases, evidenced by encouraging clinical data and the approval of several AAV gene therapies. Two major reasons for the success of AAV vectors are (i) the prior isolation of various naturally occurring viral serotypes with distinct properties, and (ii) the subsequent establishment of powerful technologies for their molecular engineering and repurposing in high throughput. Further boosting the potential of these techniques are recently implemented strategies for barcoding selected AAV capsids on the DNA and RNA level, permitting their comprehensive and parallel in vivo stratification in all major organs and cell types in a single animal. Here, we present a basic pipeline encompassing this set of complementary avenues, using AAV peptide display to represent the diverse arsenal of available capsid engineering technologies. Accordingly, we first describe the pivotal steps for the generation of an AAV peptide display library for the in vivo selection of candidates with desired properties, followed by a demonstration of how to barcode the most interesting capsid variants for secondary in vivo screening. Next, we exemplify the methodology for the creation of libraries for next-generation sequencing (NGS), including barcode amplification and adaptor ligation, before concluding with an overview of the most critical steps during NGS data analysis. As the protocols reported here are versatile and adaptable, researchers can easily harness them to enrich the optimal AAV capsid variants in their favorite disease model and for gene therapy applications.


Asunto(s)
Cápside , Dependovirus , Animales , Dependovirus/genética , Dependovirus/metabolismo , Cápside/metabolismo , Vectores Genéticos/genética , Proteínas de la Cápside/genética , Terapia Genética/métodos , Biblioteca de Péptidos
11.
Viruses ; 14(2)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35215859

RESUMEN

The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.


Asunto(s)
Dependovirus/genética , Vectores Genéticos , Anticuerpos Antihepatitis/sangre , Virus de la Hepatitis E/inmunología , Músculos/virología , Proteínas Virales/inmunología , Absorción Fisiológica , Animales , Dependovirus/inmunología , Femenino , Anticuerpos Antihepatitis/inmunología , Virus de la Hepatitis E/genética , Ratones , Ratones Endogámicos BALB C , Proteínas Virales/administración & dosificación , Proteínas Virales/genética
12.
J Surg Res ; 170(1): e179-88, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21764076

RESUMEN

BACKGROUND: Cell-based therapies are being evaluated in the setting of degenerative pathophysiologic conditions. The search for the ideal method of delivery and improvement in cell engraftment continue to pose a challenge. This study explores the feasibility of introducing mesenchymal stem cells (MSC) following aortic injury in a porcine model. METHODS: Bone marrow-derived MSC were obtained from eight pigs, characterized for the MSC markers CD13 and CD 29, labeled with green fluorescent protein (GFP), and collected for autologous injection in a porcine model of abdominal aortic aneurysm (AAA). The pigs were euthanized (1-7 d) after the procedure to assess the histologic characteristics and presence of MSC in the aortic tissue. Negative controls included noninjured aorta. Tracking of the MSC was conducted by the identification of the GFP-labeled cells using immunofluorescence. RESULTS: AAA sections stained with hematoxylin and eosin showed disorganization of the aortic tissue; collagen-muscle-elastin stain demonstrated fragmentation of elastin fibers. The presence of the implanted MSC in the aortic wall was evidenced by fluorescent microscopy showing GFP labeled cells. Engraftment of MSC up to 7 d after introduction was observed. CONCLUSION: Autologous implantation of bone marrow-derived MSC following aortic injury in a porcine model may be successfully accomplished. The long-term impact and therapeutic value of such cell-based therapy will require further investigation.


Asunto(s)
Aneurisma de la Aorta Abdominal/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Masculino , Células Madre Mesenquimatosas/fisiología , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Factor de von Willebrand/análisis
13.
Front Immunol ; 12: 753467, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777364

RESUMEN

Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the "hedgehog") and its human host (the "hare"), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dependovirus/inmunología , Terapia Genética , Vectores Genéticos/inmunología , Inmunidad Adaptativa , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Cápside/efectos de los fármacos , Cápside/inmunología , Ensayos Clínicos como Asunto , Dependovirus/clasificación , Dependovirus/genética , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Humanos , Tolerancia Inmunológica , Inmunidad Celular , Inmunidad Innata , Memoria Inmunológica , Subgrupos Linfocitarios/inmunología , Especificidad de Órganos , Serotipificación , Transgenes
14.
Mol Ther Methods Clin Dev ; 20: 587-600, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33665228

RESUMEN

Inherited retinal dystrophies (IRDs) are characterized by progressive degeneration and loss of light-sensing photoreceptors. The most promising therapeutic approach for IRDs is gene supplementation therapy using viral vectors, which requires the presence of viable photoreceptors at the time of intervention. At later disease stages, photoreceptors are lost and can no longer be rescued with this approach. For these patients, conferring light-sensing abilities to the remaining interneurons of the ON circuit (i.e., ON bipolar cells) using optogenetic tools poses an alternative treatment strategy. Such treatments, however, are hampered by the lack of efficient gene delivery tools targeting ON bipolar cells, which in turn rely on the effective isolation of these cells to facilitate tool development. Herein, we describe a method to selectively isolate ON bipolar cells via fluorescence-activated cell sorting (FACS), based on the expression of two intracellular markers. We show that the method is compatible with highly sensitive downstream analyses and suitable for the isolation of ON bipolar cells from healthy as well as degenerated mouse retinas. Moreover, we demonstrate that this approach works effectively using non-human primate (NHP) retinal tissue, thereby offering a reliable pipeline for universal screening strategies that do not require inter-species adaptations or transgenic animals.

15.
Biophys J ; 98(10): 2063-71, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20483313

RESUMEN

Chronically elevated levels of oxidative stress resulting from increased production and/or impaired scavenging of reactive oxygen species are a hallmark of mitochondrial dysfunction in left ventricular hypertrophy. Recently, oscillations of the mitochondrial membrane potential (DeltaPsi(m)) were mechanistically linked to changes in cellular excitability under conditions of acute oxidative stress produced by laser-induced photooxidation of cardiac myocytes in vitro. Here, we investigate the spatiotemporal dynamics of DeltaPsi(m) within the intact heart during ischemia-reperfusion injury. We hypothesize that altered metabolic properties in left ventricular hypertrophy modulate DeltaPsi(m) spatiotemporal properties and arrhythmia propensity.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Cardiomegalia/fisiopatología , Potencial de la Membrana Mitocondrial/fisiología , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Mitocondrias Cardíacas , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/fisiopatología
16.
Mol Ther Methods Clin Dev ; 15: 246-256, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31720303

RESUMEN

Transplant vasculopathy (TV), characterized by obstructive lesions in affected vessels, represents one of the long-term complications of cardiac transplantation. Activation of the transcription factor activator protein-1 (AP-1) is implicated in smooth muscle cell (SMC) phenotypic switch from contractile to synthetic function, increasing the migration and proliferation rate of these cells. We hypothesize that adeno-associated virus (AAV)-mediated delivery of an RNA hairpin AP-1 decoy oligonucleotide (dON) might effectively ameliorate TV severity in a mouse aortic allograft model. Aortic allografts from DBA/2 mice ex vivo transduced with modified AAV9-SLR carrying a targeting peptide within the capsid surface were transplanted into the infrarenal aorta of C57BL/6 mice. Cyclosporine A (10 mg/kg BW) was administered daily. AP-1 dONs were intracellularly expressed in the graft tissue as small hairpin RNA proved by fluorescent in situ hybridization. Explantation after 30 days and histomorphometric evaluation revealed that AP-1 dON treatment significantly reduced intima-to-media ratio by 41.5% (p < 0.05) in the grafts. In addition, expression of adhesion molecules, cytokines, as well as numbers of proliferative SMCs, matrix metalloproteinase-9-positive cells, and inflammatory cell infiltration were significantly decreased in treated aortic grafts. Our findings demonstrate the feasibility, efficacy, and specificity of the anti-AP-1 RNA dON approach for the treatment of allograft vasculopathy in an animal model. Moreover, the AAV-based approach in general provides the possibility to achieve a prolonged delivery of nucleic-acids-based therapeutics in to the blood vessel wall.

17.
Circ Arrhythm Electrophysiol ; 12(9): e007465, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31514528

RESUMEN

BACKGROUND: Despite an increasing understanding of atrial fibrillation (AF) pathophysiology, translation into mechanism-based treatment options is lacking. In atrial cardiomyocytes of patients with chronic AF, expression, and function of tandem of P domains in a weak inward rectifying TASK-1 (K+ channel-related acid-sensitive K+ channel-1) (K2P3.1) atrial-specific 2-pore domain potassium channels is enhanced, resulting in action potential duration shortening. TASK-1 channel inhibition prevents action potential duration shortening to maintain values observed among sinus rhythm subjects. The present preclinical study used a porcine AF model to evaluate the antiarrhythmic efficacy of TASK-1 inhibition by adeno-associated viral anti-TASK-1-siRNA (small interfering RNA) gene transfer. METHODS: AF was induced in domestic pigs by atrial burst stimulation via implanted pacemakers. Adeno-associated viral vectors carrying anti-TASK-1-siRNA were injected into both atria to suppress TASK-1 channel expression. After the 14-day follow-up period, porcine cardiomyocytes were isolated from right and left atrium, followed by electrophysiological and molecular characterization. RESULTS: AF was associated with increased TASK-1 transcript, protein and ion current levels leading to shortened action potential duration in atrial cardiomyocytes compared to sinus rhythm controls, similar to previous findings in humans. Anti-TASK-1 adeno-associated viral application significantly reduced AF burden in comparison to untreated AF pigs. Antiarrhythmic effects of anti-TASK-1-siRNA were associated with reduction of TASK-1 currents and prolongation of action potential durations in atrial cardiomyocytes to sinus rhythm values. Conclusions Adeno-associated viral-based anti-TASK-1 gene therapy suppressed AF and corrected cellular electrophysiological remodeling in a porcine model of AF. Suppression of AF through selective reduction of TASK-1 currents represents a new option for antiarrhythmic therapy.


Asunto(s)
Antiarrítmicos/uso terapéutico , Fibrilación Atrial/genética , Remodelación Atrial/fisiología , Regulación de la Expresión Génica , Terapia Genética/métodos , Atrios Cardíacos/fisiopatología , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/terapia , Modelos Animales de Enfermedad , Electrocardiografía , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/biosíntesis , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/biosíntesis , ARN/genética , Ratas , Porcinos
18.
Cardiovasc Res ; 115(8): 1296-1305, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418544

RESUMEN

AIMS: Heart failure is characterized by structural and metabolic cardiac remodelling. The aim of the present study is to expand our understanding of the complex metabolic alterations in the transition from pathological hypertrophy to heart failure and exploit the results from a translational perspective. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) or sham surgery and sacrificed 2 weeks, 4 weeks, or 6 weeks after the procedure. Samples from plasma, liver, skeletal muscle, and heart were collected and analysed using metabolomics. Cardiac samples were also analysed by transcriptional profiling. Progressive alterations of key cardiac metabolic pathways and gene expression patterns indicated impaired mitochondrial function and a metabolic switch during transition to heart failure. Similar to the heart, liver, and skeletal muscle revealed significant metabolic alterations such as depletion of essential fatty acids and glycerolipids in late stages of heart failure. Circulating metabolites, particularly fatty acids, reflected cardiac metabolic defects, and deteriorating heart function. For example, inverse correlation was found between plasma and the heart levels of triacylglycerol (C18:1, C18:2, C18:3), and sphingomyelin (d18:1, C23:0) already at an early stage of heart failure. Interestingly, combining metabolic and transcriptional data from cardiac tissue revealed that decreased carnitine shuttling and transportation preceded mitochondrial dysfunction. We, thus, studied the therapeutic potential of OCTN2 (Organic Cation/Carnitine Transporter 2), an important factor for carnitine transportation. Cardiac overexpression of OCTN2 using an adeno-associated viral vector significantly improved ejection fraction and reduced interstitial fibrosis in mice subjected to TAC. CONCLUSION: Comprehensive plasma and tissue profiling reveals systemic metabolic alterations in heart failure, which can be used for identification of novel biomarkers and potential therapeutic targets.


Asunto(s)
Cardiomegalia/sangre , Metabolismo Energético , Insuficiencia Cardíaca/sangre , Hígado/metabolismo , Metabolómica , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Remodelación Ventricular , Animales , Biomarcadores/sangre , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Factores de Tiempo
19.
Circ Genom Precis Med ; 11(3): e001893, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29545480

RESUMEN

BACKGROUND: Limb-Girdle muscular dystrophies (LGMD) are a heritable group of genetically determined disorders with a primary involvement of the pelvic or shoulder girdle musculature with partially cardiac manifestation, such as dilated cardiomyopathy (DCM) and life-threatening tachyarrhythmia. We report here that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes from a patient with LGMD2I and DCM associated with recurrent ventricular tachycardia displayed ion channel dysfunction and abnormality of calcium homeostasis. METHODS: Dermal fibroblasts obtained from a patient with LGMD2I harboring a fukutin-related protein gene mutation (826C>A; Leu276Ile) and 3 healthy donors were reprogrammed to hiPSCs. The hiPSCs were differentiated into cardiomyocytes and used for biological and electrophysiological studies. RESULTS: Compared with hiPSC cardiomyocytes from the healthy donors, the hiPSC cardiomyocytes from the patient exhibited abnormal action potentials characterized by reduced amplitude and upstroke velocity. The peak and late Na channel currents (INa) as well as the peak L-type calcium channel currents were significantly reduced. The expression of SCN5A and CACNA1C was reduced in DCM cardiomyocytes, consistent with reduction of INa and L-type calcium channel currents. In addition, the rapidly activating delayed rectifier potassium current (IKr) was reduced, whereas the transient outward current (Ito) and slowly activating delayed rectifier potassium current (IKs) were similar in DCM and control cardiomyocytes. Finally, a significant reduction of systolic and diastolic intracellular Ca2+ concentrations was detected in DCM cardiomyocytes. CONCLUSIONS: This study demonstrates that patient-specific hiPSC cardiomyocytes can recapitulate some phenotypic properties of LGMD2I with DCM and provide a platform for studies on the cardiac events in LGMD.


Asunto(s)
Cardiomiopatía Dilatada/diagnóstico , Distrofia Muscular de Cinturas/diagnóstico , Potenciales de Acción , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Distrofia Muscular de Cinturas/complicaciones , Distrofia Muscular de Cinturas/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Pentosiltransferasa , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/genética
20.
Methods Mol Biol ; 1521: 109-126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27910044

RESUMEN

In recent years gene therapy using adeno-associated viral (AAV) vectors to treat cardiac disease has seen an unprecedented surge, owing to its safety, low immunogenicity relative to other vectors and high and long-term transduction efficiency. This field has also been hampered by the presence of preexisting neutralizing antibodies, not only in patients participating in clinical trials but also in preclinical large animal models. These conflicting circumstances have generated the need for a simple, efficient, and fast assay to screen subjects for the presence of neutralizing antibodies, or lack thereof, in order for them to be included in gene therapy trials.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Dependovirus/inmunología , Pruebas de Neutralización/métodos , Animales , Recuento de Células , Dependovirus/genética , Genoma Viral , Humanos , Estadística como Asunto , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA