Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Annu Rev Entomol ; 69: 139-157, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616600

RESUMEN

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), transmits the pathogen "Candidatus liberibacter solanacearum" (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.


Asunto(s)
Hemípteros , Insecticidas , Solanum tuberosum , Animales , Enfermedades de las Plantas/prevención & control , Biología
2.
Annu Rev Entomol ; 69: 1-20, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37562049

RESUMEN

The larval stages of click beetle (Coleoptera: Elateridae) species, several of which are serious agricultural pests, are called wireworms. Their cryptic subterranean habitat, resilience, among-species differences in ecology and biology, and broad host range, as well as the lack of objective economic injury thresholds, have rendered wireworms a challenging pest complex to control. Significant progress has been made in recent years, introducing a new effective class of insecticides and improving species identification and our understanding of species-specific phenology, chemical ecology (i.e., adult sex pheromones and larval olfactory cues), and abiotic and biotic factors influencing the efficacy of biological control agents. These new developments have created opportunities for further research into improving our risk assessment, monitoring, and integrated pest management capabilities.


Asunto(s)
Escarabajos , Insecticidas , Animales , Larva , Ecosistema , Agricultura
3.
Plant Dis ; 107(9): 2729-2735, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36774578

RESUMEN

Increased populations of Heterodera avenae in southeastern Idaho are associated with increased planting of susceptible cereal cultivars and lack of crop rotation. Identifying high-yield, resistant spring wheat cultivars with tolerance requires testing new genotypes and susceptibility assessments of marketed cultivars. We conducted two experiments to determine whether cultivars with putative resistance could maintain acceptable yield in the presence of H. avenae. We also evaluated the tolerance response in relation to previously tested cultivars. Seven spring wheat cultivars were planted in two irrigated commercial fields that were naturally infested with high populations of H. avenae. Measures of resistance, tolerance, and grain yield were assessed in aldicarb-treated versus nontreated plots. In aldicarb-treated plots in both years, grain yield of the susceptible cultivars Snow Crest, WestBred 936, WB9411, Patwin-515, and WB9668 was significantly increased. The expected yield increase with aldicarb was limited for the moderately susceptible Expresso due to water stress. 'WB-Rockland', carrying the Cre5 resistance gene, maintained its standard yield, while none of the other cultivars in the experiment showed resistance or tolerance. Our results indicated that aldicarb improves wheat grain yield in irrigated crop production systems, and although removed from the market, it is effective and has utility for research. The results also support the hypothesis that high yield susceptible cultivars can mask the effect of H. avenae on grain yield when managed appropriately.


Asunto(s)
Quistes , Tylenchoidea , Animales , Triticum/genética , Grano Comestible , Aldicarb , Idaho , Tylenchoidea/genética
4.
Plant Dis ; 105(2): 444-449, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32716264

RESUMEN

Barley yellow dwarf virus (BYDV) is an important vector-borne pathogen of cereals. Although many species of grasses are known to host BYDV, knowledge of their role in virus spread in regional agroecosystems remains limited. Between 2012 and 2016, Idaho winter wheat production was affected by BYDV. BYDV-PAV and the bird cherry-oat aphid (BCOA) (Rhopalosiphum padi L.) vector were commonly present in the affected areas. A series of greenhouse bioassays were performed to examine whether two types of corn (Zea mays L.), dent and sweet, and three commonly found grassy weeds, downy brome (Bromus tectorum L.), green foxtail (Setaria viridis L.), and foxtail barley (Hordeum jubatum L.), can be inoculated with BYDV (species BYDV-PAV) by BCOA and also act as sources of the virus in winter wheat. BCOA successfully transmitted BYDV-PAV to both corn types and all weed species. Virus titers differed between the weed species (P = 0.032) and between corn types (P = 0.001). In transmission bioassays, aphids were able to survive on these host plants during the 5-day acquisition access period and later successfully transmitted BYDV-PAV to winter wheat (var. SY Ovation). Transmission success was positively correlated with the virus titer of the source plant (P < 0.001) and influenced by weed species (P = 0.028) but not corn type. Overall, the results of our inoculation and transmission assays showed that the examined weed species and corn types can be inoculated with BYDV-PAV by BCOA and subsequently act as sources of infections in winter wheat.


Asunto(s)
Hordeum , Triticum , Animales , Idaho , Enfermedades de las Plantas , Zea mays
5.
J Insect Sci ; 20(2)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294181

RESUMEN

The potato/tomato psyllid Bactericera cockerelli (Sulc) transmits 'Candidatus Liberibacter solanacearum' (Lso) (also known as 'Candidatus Liberibacter psyllaurous'), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety 'Russet Burbank' was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18-24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.


Asunto(s)
Hemípteros/fisiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología , Solanum tuberosum , Animales , Antibiosis/genética , Femenino , Genotipo , Hemípteros/microbiología , Locomoción , Masculino , Solanum tuberosum/genética
6.
Plant Dis ; 102(3): 561-568, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673495

RESUMEN

Zebra chip (ZC) disease of potato is associated with the putative pathogen 'Candidatus Liberibacter solanacearum', which is transmitted by the potato psyllid Bactericera cockerelli (Hem., Triozidae). The present study was initiated to investigate 'Ca. L. solanacearum' development during and following typical commercial storage practices. Using bacteriliferous psyllids, Russet Norkotah potato tubers were infested in field cages 14, 10, and 4 days before harvest. Changes in 'Ca. L. solanacearum' detection rate, 'Ca. L. solanacearum' titer, and concentrations of phenolic compounds were documented throughout storage. 'Ca. L. solanacearum' titer continued to increase during storage. Although significant increases in the frequency of 'Ca. L. solanacearum' detection were observed in all infestation treatments, the impact of 'Ca. L. solanacearum' infection on tuber quality remained comparatively low in plants infected 4 days before harvest, because the majority of the tubers remained asymptomatic. Minimizing storage and retail chain movement durations would help to limit 'Ca. L. solanacearum' impact on tuber quality in tubers infected 14 and 10 days before harvest. This study also demonstrated that 'Ca. L. solanacearum' can relocate from a newly infected leaf to a tuber in as little as 4 days. Psyllid management is recommended until at least 4 days before green harvest, when psyllid pressure is high in fields in which tubers are destined for commercial storage.


Asunto(s)
Enfermedades de las Plantas/microbiología , Rhizobiaceae/aislamiento & purificación , Solanum tuberosum/microbiología , Animales , Hemípteros , Fenoles/análisis , Hojas de la Planta/microbiología , Tubérculos de la Planta/microbiología , Estaciones del Año
7.
Phytopathology ; 106(8): 854-60, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27111802

RESUMEN

Zebra chip (ZC) disease, caused by 'Candidatus Liberibacter solanacearum', which is transmitted by the potato psyllid, has negatively affected potato production in the United States for over a decade. The present study was conducted to evaluate the affect of the number of bacteriliferous psyllids on 'Ca. L. solanacearum' titer, levels of amino acids, carbohydrates, phenolics, and, subsequently, symptom severity in potato tubers. 'Red La Soda' and 'Russet Norkotah' potato were planted in the field and later inoculated with 'Ca. L. solanacearum' using 5, 10, and 30 bacteriliferous potato psyllids. In both cultivars, the increase in the number of psyllids resulted in elevated 'Ca. L. solanacearum' titer and symptom severity. In the cases of amino acids and reducing sugars, responses to vector density appeared to be cultivar specific. Overall, phenolic compounds showed a consistent increase following infection, a response that, in most cases, was positively correlated with the number of infective psyllids. Results quantified the impact of the number of infective psyllids on 'Ca. L. solanacearum' titer and biochemical content of infected tubers previously shown to be correlated with the degree of symptom expression. Managing vector numbers is currently the only effective approach for minimizing losses to ZC in grower's fields. However, our findings on physiological responses to vector density suggest that, in combination with chemical control, development of more tolerant or resistant potato genotypes, with emphasis on interrupting pathways that are associated with increased phenolic activity levels, may lead to more sustainable management of ZC in the future.


Asunto(s)
Hemípteros , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/metabolismo , Solanum tuberosum/microbiología , Aminoácidos/metabolismo , Animales , Bacterias/clasificación , Metabolismo de los Hidratos de Carbono , Fenoles/metabolismo , Densidad de Población , Solanum tuberosum/metabolismo
8.
Plant Dis ; 99(2): 274-280, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30699564

RESUMEN

Zebra chip (ZC) is a disease of potato, putatively caused by the vectorborne bacterium 'Candidatus Liberibacter solanacearum'. Although ZC has been a major concern due its significant negative impact on both potato yield and quality, its effect on seed potato sprouting has been the subject of recent evaluations. The present study was conducted to determine whether variation in emergence is affected by the infection duration of 'Ca. L. solanacearum'-infected seed potato prior to harvest. Furthermore, changes in pathogen detectability and titer levels in late-season-infected plants also were evaluated during and after cold storage. The rate of ZC-affected seed potato emergence following cold storage was not affected by the time of infection in the field, and the majority of ZC-infected tubers failed to sprout. Time to "seedling" emergence also was significantly longer in seed potato from plants infected ≥2 weeks before harvest. The small percentage of plants that emerged from ZC-affected seed potato produced stunted, nonvigorous plants that often died after a few weeks. The rate of successful 'Ca. L. solanacearum' detection increased during cold storage, suggesting a continued 'Ca. L. solanacearum'-tuber interaction postharvest. After tubers were removed from cold storage and held at room temperature, 'Ca. L. solanacearum' titer started to increase. Although none of the tubers from plants infected 1 week before harvest exhibited any disease symptoms or tested positive for 'Ca. L. solanacearum' at harvest, up to 38% of these tubers tested positive following placement at room temperature after cold storage. Results of this study suggest that the role of seedborne ZC in disease epidemiology is likely to be insignificant. Furthermore, the findings of this study emphasized the importance of continued control measures until at least a week before harvest, and highlighted the need for improved methods of 'Ca. L. solanacearum' detection at harvest, especially in tubers infected late in the season.

9.
Plant Dis ; 98(4): 525-531, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30708730

RESUMEN

Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant 'Mace' and 'RonL are commercially available and contain the wsm1 and wsm2 genes, respectively, for resistance to WSMV. However, the resistance in these cultivars is temperature sensitive, ineffective above 27°C, and does not protect against the other common wheat viruses. The majority of winter wheat in the Southern Great Plains is planted in early fall as a dual-purpose crop for both grazing and grain production. Early planting exposes wheat plants to warmer temperatures above the threshold for effective resistance. Studies were conducted to determine whether the resistance found in these cultivars would give infected plants the ability to recover as temperatures cooled to a range conducive to effective genetic resistance. RonL, Mace, 'TAM 111', 'TAM 112', and 'Karl 92' wheat were infested with WSMV viruliferous mites at temperatures above the resistance threshold. After the initial 4-week infection period, plants were subjected to progressively cooler temperatures during the winter months, well below the resistance threshold. Throughout the study, plant samples were taken to quantify virus titer and mite populations. Resistant RonL and Mace, which became severely infected during the initial infection period, were not able to recover even when temperatures dropped below the resistance threshold. However, TAM 112 showed resistance to WSMV but, more importantly, it also showed resistance to the wheat curl mite, because the mite population in this cultivar was significantly lower than on all other cultivars. The results of this study are significant in that they represent the first evidence of quantitative resistance to both WSMV and the wheat curl mite in a single wheat cultivar. Resistance to the wheat curl mite has potential to reduce losses to all mite-vectored virus diseases of wheat and not just WSMV.

10.
Appl Environ Microbiol ; 78(3): 638-43, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22101059

RESUMEN

Approaches to control vector-borne diseases rarely focus on the interface between vector and microbial pathogen, but strategies aimed at disrupting the interactions required for transmission may lead to reductions in disease spread. We tested if the vector transmission of the plant-pathogenic bacterium Xylella fastidiosa was affected by three groups of molecules: lectins, carbohydrates, and antibodies. Although not comprehensively characterized, it is known that X. fastidiosa adhesins bind to carbohydrates, and that these interactions are important for initial cell attachment to vectors, which is required for bacterial transmission from host to host. Lectins with affinity to substrates expected to occur on the cuticular surface of vectors colonized by X. fastidiosa, such as wheat germ agglutinin, resulted in statistically significant reductions in transmission rate, as did carbohydrates with N-acetylglucosamine residues. Presumably, lectins bound to receptors on the vector required for cell adhesion/colonization, while carbohydrate-saturated adhesins on X. fastidiosa's cell surface. Furthermore, antibodies against X. fastidiosa whole cells, gum, and afimbrial adhesins also resulted in transmission blockage. However, no treatment resulted in the complete abolishment of transmission, suggesting that this is a complex biological process. This work illustrates the potential to block the transmission of vector-borne pathogens without directly affecting either organism.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Antibacterianos/farmacología , Transmisión de Enfermedad Infecciosa/prevención & control , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Xylella/efectos de los fármacos , Xylella/patogenicidad , Animales , Anticuerpos Antibacterianos/farmacología , Carbohidratos/farmacología , Hemípteros/microbiología , Lectinas/farmacología
11.
Insects ; 13(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36135470

RESUMEN

The rhizosphere is where plant roots, physical soil, and subterranean organisms interact to contribute to soil fertility and plant growth. In agroecosystems, the nature of the ecological interactions within the rhizosphere is highly dynamic due to constant disruptions from agricultural practices. The concept of integrated pest management (IPM) was developed in order to promote an approach which is complementary to the environment and non-target organisms, including natural enemies, by reducing the sole reliance on synthetic pesticides to control pests. However, some of the implemented integrated cultural and biological control practices may impact the rhizosphere, especially when targeting subterranean pests. Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are generalist herbivores and a voracious group of pests that are difficult to control. This paper introduces some existing challenges in wireworm IPM, and discusses the potential impacts of various control methods on the rhizosphere. The awareness of the potential implications of different pest management approaches on the rhizosphere will assist in decision-making and the selection of the control tactics with the least long-term adverse effects on the rhizosphere.

12.
Front Plant Sci ; 13: 779096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769296

RESUMEN

Hessian fly [Mayetiola destructor (Say)] is a major pest of wheat (Triticum aestivum L.) throughout the United States and in several other countries. A highly effective and economically feasible way to control Hessian fly is with resistant cultivars. To date, over 37 Hessian fly resistance genes have been discovered and their approximate locations mapped. Resistance breeding is still limited, though, by the genes' effectiveness against predominant Hessian fly biotypes in a given production area, genetic markers that are developed for low-throughput marker systems, poorly adapted donor germplasm, and/or the inadequacy of closely linked DNA markers to track effective resistance genes in diverse genetic backgrounds. The purposes of this study were to determine the location of the Hessian fly resistance gene in the cultivar "Kelse" (PI 653842) and to develop and validate Kompetitive Allele Specific PCR (KASP) markers for the resistance locus. A mapping population was genotyped and screened for Hessian fly resistance. The resulting linkage map created from 2,089 Single Nucleotide Polymorphism SNP markers placed the resistance locus on the chromosome 6B short arm, near where H34 has been reported. Three flanking SNPs near the resistance locus were converted to KASP assays which were then validated by fine-mapping and testing a large panel of breeding lines from hard and soft wheat germplasm adapted to the Pacific Northwest. The KASP markers presented here are tightly linked to the resistance locus and can be used for marker-assisted selection by breeders working on Hessian fly resistance and allow confirmation of this Hessian fly resistance gene in diverse germplasm.

13.
Pest Manag Sci ; 78(9): 3731-3745, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35415948

RESUMEN

Zebra chip disease (ZC), associated with the plant pathogenic bacterium 'Candidatus Liberibacter solanacearum' (psyllaurous) (CLso), is a major threat to global potato production. In addition to yield loss, CLso infection causes discoloration in the tubers, rendering them unmarketable. CLso is transmitted by the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). ZC is managed by prophylactic insecticide applications to control the vector, which is costly and carries environmental and human health risks. Given the expense, difficulty, and unsustainability of managing vector-borne diseases with insecticides, identifying sources of resistance to CLso and developing varieties that are resistant or tolerant to CLso and/or potato psyllids has become a major goal of breeding efforts. These efforts include field and laboratory evaluations of noncultivated germplasm and cultivars, studies of tubers in cold storage, detailed quantifications of biochemical responses to infection with CLso, possible mechanisms underlying insect resistance, and traditional examination of potato quality following infections. This review provides a brief history of ZC and potato psyllid, a summary of currently available tools to manage ZC, and a comprehensive review of breeding efforts for ZC and potato psyllid management within the greater context of Integrated Pest Management (IPM) strategies. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Hemípteros , Insecticidas , Rhizobiaceae , Solanum tuberosum , Animales , Hemípteros/fisiología , Humanos , Insectos Vectores/fisiología , Liberibacter , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizobiaceae/fisiología , Solanum tuberosum/microbiología
14.
Sci Rep ; 11(1): 4761, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637802

RESUMEN

The Hessian fly Mayetiola destructor (Diptera: Cecidmyiidae) is a major pest of wheat, globally. We conducted a series of laboratory choice and no-choice assays to quantify Hessian fly host preference for barley (cv. Champion), oat (cv. Cayuse), susceptible (cv. Alturas), and resistant (cv. Hollis) wheat. In addition, larval survivorship and adult emergence were compared among the evaluated host plants. We then examined whether insect preference for a host can be explained by differences in plant spectral reflectance. Further, larval survivorship and adult emergence were compared among host plants in relation to phytohormone concentrations. Hessian flies laid more eggs on wheat compared to either oat or barley. Spectral reflectance measurements of leaves were similar between susceptible and resistant wheat cultivars but different from those of barley and oat. Our results suggested that higher reflectance in the near-infrared range and lower reflectance in the visible range may be used by females for host selection. Hessian fly larvae were unable to develop into the pupal stage on resistant wheat and oat. No significant difference in larval survivorship was detected between the susceptible wheat and barley. However, adult emergence was significantly higher on barley than the susceptible wheat. Phytohormonal evaluations revealed that salicylic acid (SA) may be an important contributor to plant defense response to larval feeding as relatively higher concentrations of SA were present in oat and resistant wheat. While resistance in the resistant wheat is achieved only through antibiosis, both antibiosis and antixenosis were in effect rendering oat as a non-host for Hessian flies.


Asunto(s)
Dípteros/fisiología , Grano Comestible/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Triticum/parasitología , Animales , Avena/metabolismo , Avena/parasitología , Grano Comestible/metabolismo , Hordeum/metabolismo , Hordeum/parasitología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Triticum/metabolismo
15.
J Econ Entomol ; 114(5): 2241-2244, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34240170

RESUMEN

Wireworms are the larval stage of click beetles (Coleoptera: Elateridae), and some of their species are serious pests of many crops. In the present study, we evaluated the efficacy of naturally occurring and commercial entomopathogenic nematode species against the sugar beet wireworm, Limonius californicus (Mannerheim), in the laboratory. First, efficacies of Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) collected from an irrigated (S. feltiae-SSK) and a dryland (S. feltiae-SSC) field and the two commercial entomopathogenic nematode species, S. carpocapsae (Weiser) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), were examined. Efficacies of the two field-collected S. feltiae isolates were also compared against a commercial S. feltiae strain. In the first bioassay, S. feltiae-SSK caused 63.3% wireworm mortality, followed by 30% caused by S. carpocapsae, 23.3% by S. feltiae-SSC, and 6.7% by H.bacteriophora. In the second assay, S. feltiae-SSK killed 56.7% of the wireworms, ≈2.1- and ≈5.7-fold higher than S. feltiae-SSC and the commercial isolate, respectively.


Asunto(s)
Beta vulgaris , Escarabajos , Rabdítidos , Animales , Control Biológico de Vectores , Azúcares
16.
Sci Rep ; 11(1): 2242, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500488

RESUMEN

Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Sulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.


Asunto(s)
Oviposición/fisiología , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Solanum tuberosum/virología , Animales , Ácido Salicílico
17.
Proc Biol Sci ; 277(1686): 1371-6, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20053645

RESUMEN

The leading hypothesis for the evolution of male genital complexity proposes that genital traits evolve in response to post-insemination sexual selection; that is, via cryptic female choice or sperm competition. Here, we describe a laser ablation technique for high-precision manipulation of microscale body parts of insects, and employ it to discern the adaptive function of a rapidly evolving and taxonomically important genital trait: the intromittent claw-like genital spines of male Drosophila bipectinata Duda. We demonstrate experimentally and unambiguously that the genital spines of this species function to mechanically couple the genitalia together. The excision of the spines by laser ablation sharply reduced the ability of males both to copulate and to compete against rival males for mates. When spineless males did succeed to copulate, their insemination success and fertilization rate were not statistically different from controls, at odds with the post-insemination sexual selection hypothesis of genital function and evolution. The results provide direct experimental support for the hypothesis that genital traits evolve in response to sexual selection occurring prior to insemination.


Asunto(s)
Adaptación Fisiológica , Drosophila/anatomía & histología , Genitales Masculinos , Terapia por Láser , Conducta Sexual Animal , Animales , Copulación/fisiología , Drosophila/clasificación , Drosophila/fisiología , Femenino , Genitales Femeninos/anatomía & histología , Genitales Femeninos/fisiología , Genitales Masculinos/anatomía & histología , Genitales Masculinos/fisiología , Genitales Masculinos/cirugía , Inseminación/fisiología , Masculino
18.
J Econ Entomol ; 113(5): 2079-2085, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32651952

RESUMEN

Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Sulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.


Asunto(s)
Alcaloides de Claviceps , Hemípteros , Hypocreales , Solanum tuberosum , Animales , Ninfa
19.
PLoS One ; 15(4): e0231973, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32343710

RESUMEN

Potato psyllid (Bactericera cockerelli Sulc)-transmitted "Candidatus Liberibacter solanacearum" (Lso) has been negatively impacting the potato industry in the United States as well as other potato-producing countries. Lso has been linked to a condition known as zebra chip (ZC) that affects yield and quality of potato tubers. Efforts to find sources of resistance to ZC have primarily focused on greenhouse evaluations based on a single inoculation time prior to harvest. Plant response to infection, however, could be influenced by the developmental stage of the host plant, and ZC may continue to develop after harvest. The objectives of this study were to quantify Lso inoculation success, Lso titer, ZC severity and Lso development during storage in eight potato genotypes. These evaluations were conducted on plants infested with Lso-positive psyllids at 77, 12, and 4 days before vine removal (DBVR). The evaluated genotypes were categorized according to their relative resistance to Lso and tolerance to ZC symptoms. Lso inoculation success in the genotype family A07781, derived from Solanum chacoense, was lower than that of the susceptible control ('Russet Burbank'). A07781-4LB and A07781-3LB genotypes were characterized relatively resistant to the pathogen and highly tolerant to ZC symptoms, while A07781-10LB was categorized as susceptible to Lso but relatively tolerant to symptom expression. In stored potatoes, increase in Lso concentrations was observed for all infestation times. However, significantly higher Lso titer was detected in tubers infested 12 DBVR and the effect was similar across genotypes. Overall, the A07781 family can be considered as a promising source of resistance or tolerance to ZC.


Asunto(s)
Hemípteros/fisiología , Enfermedades de las Plantas/etiología , Solanum tuberosum/genética , Animales , ADN de Plantas/aislamiento & purificación , ADN de Plantas/metabolismo , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo
20.
Commun Biol ; 3(1): 489, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895437

RESUMEN

The larvae of click beetles (Coleoptera: Elateridae), known as "wireworms," are agricultural pests that pose a substantial economic threat worldwide. We produced one of the first wireworm genome assemblies (Limonius californicus), and investigated population structure and phylogenetic relationships of three species (L. californicus, L. infuscatus, L. canus) across the northwest US and southwest Canada using genome-wide markers (RADseq) and genome skimming. We found two species (L. californicus and L. infuscatus) are comprised of multiple genetically distinct groups that diverged in the Pleistocene but have no known distinguishing morphological characters, and therefore could be considered cryptic species complexes. We also found within-species population structure across relatively short geographic distances. Genome scans for selection provided preliminary evidence for signatures of adaptation associated with different pesticide treatments in an agricultural field trial for L. canus. We demonstrate that genomic tools can be a strong asset in developing effective wireworm control strategies.


Asunto(s)
Adaptación Fisiológica/genética , Escarabajos/genética , Genoma de los Insectos , Control de Plagas , Animales , Bases de Datos Genéticas , Variación Genética , Genética de Población , Geografía , Filogenia , Análisis de Componente Principal , Tamaño de la Muestra , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA