Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 24(4): 2402-2415, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31957261

RESUMEN

Arthrospira platensis, a blue-green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti-carcinogenic activities. The aim of our study was to assess the possible anti-angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA-TU-8902) and immortalized endothelial-like cells (Ea.hy926). PA-TU-8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial-like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF-A mRNA and protein expressions were up-regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK-regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti-angiogenic features, which might account for the anticancer effects of this blue-green alga.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Spirulina/química , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Neoplasias Pancreáticas
2.
Cell Signal ; 99: 110431, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35933033

RESUMEN

The ERK signaling pathway, consisting of core protein kinases Raf, MEK and effector kinases ERK1/2, regulates various biological outcomes such as cell proliferation, differentiation, apoptosis, or cell migration. Signal transduction through the ERK signaling pathway is tightly controlled at all levels of the pathway. However, it is not well understood whether ERK pathway signaling can be modulated by the abundance of ERK pathway core kinases. In this study, we investigated the effects of low-level overexpression of the ERK2 isoform on the phenotype and scattering of cuboidal MDCK epithelial cells growing in discrete multicellular clusters. We show that ERK2 overexpression reduced the vertical size of lateral membranes that contain cell-cell adhesion complexes. Consequently, ERK2 overexpressing cells were unable to develop cuboidal shape, remained flat with increased spread area and intercellular adhesive contacts were present only on the basal side. Interestingly, ERK2 overexpression was not sufficient to increase phosphorylation of multiple downstream targets including transcription factors and induce global changes in gene expression, namely to increase the expression of pro-migratory transcription factor Fra1. However, ERK2 overexpression enhanced HGF/SF-induced cell scattering as these cells scattered more rapidly and to a greater extent than parental cells. Our results suggest that an increase in ERK2 expression primarily reduces cell-cell cohesion and that weakened intercellular adhesion synergizes with upstream signaling in the conversion of the multicellular epithelium into single migrating cells. This mechanism may be clinically relevant as the analysis of clinical data revealed that in one type of cancer, pancreatic adenocarcinoma, ERK2 overexpression correlates with a worse prognosis.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/metabolismo , Adhesión Celular , Proliferación Celular , Células Epiteliales/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilación , Transducción de Señal , Factores de Transcripción/metabolismo
3.
Oxid Med Cell Longev ; 2018: 4069167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057678

RESUMEN

Nutritional factors which exhibit antioxidant properties, such as those contained in green plants, may be protective against cancer. Chlorophyll and other tetrapyrrolic compounds which are structurally related to heme and bilirubin (a bile pigment with antioxidant activity) are among those molecules which are purportedly responsible for these effects. Therefore, the aim of our study was to assess both the antiproliferative and antioxidative effects of chlorophylls (chlorophyll a/b, chlorophyllin, and pheophytin a) in experimental pancreatic cancer. Chlorophylls have been shown to produce antiproliferative effects in pancreatic cancer cell lines (PaTu-8902, MiaPaCa-2, and BxPC-3) in a dose-dependent manner (10-125 µmol/L). Chlorophylls also have been observed to inhibit heme oxygenase (HMOX) mRNA expression and HMOX enzymatic activity, substantially affecting the redox environment of pancreatic cancer cells, including the production of mitochondrial/whole-cell reactive oxygen species, and alter the ratio of reduced-to-oxidized glutathione. Importantly, chlorophyll-mediated suppression of pancreatic cancer cell viability has been replicated in in vivo experiments, where the administration of chlorophyll a resulted in the significant reduction of pancreatic tumor size in xenotransplanted nude mice. In conclusion, this data suggests that chlorophyll-mediated changes on the redox status of pancreatic cancer cells might be responsible for their antiproliferative and anticancer effects and thus contribute to the decreased incidence of cancer among individuals who consume green vegetables.


Asunto(s)
Antineoplásicos/farmacología , Clorofila/farmacología , Neoplasias Pancreáticas/metabolismo , Antioxidantes/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Feofitinas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxidos/metabolismo , Synechocystis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA