Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 192(1): 170-187, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722259

RESUMEN

Assembly of the functional complexes of the mitochondrial respiratory chain requires sophisticated and efficient regulatory mechanisms. In plants, the subunit composition and assembly factors involved in the biogenesis of cytochrome c oxidase (complex IV) are substantially less defined than in mammals and yeast. In this study, we cloned maize (Zea mays) Small kernel 11 (Smk11) via map-based cloning. Smk11 encodes a mitochondria-localized tetratricopeptide repeat protein. Disruption of Smk11 severely affected the assembly and activity of mitochondrial complex IV, leading to delayed plant growth and seed development. Protein interactions studies revealed that SMK11 might interact with four putative complex IV assembly factors, Inner membrane peptidase 1A (ZmIMP1A), MYB domain protein 3R3 (ZmMYB3R-3), cytochrome c oxidase 23 (ZmCOX23), and mitochondrial ferredoxin 1 (ZmMFDX1), among which ZmMFDX1 might interact with subunits ZmCOX6a and ZmCOX-X1; ZmMYB3R-3 might also interact with ZmCOX6a. The mutation of SMK11 perturbed the normal assembly of these subunits, leading to the inactivation of complex IV. The results of this study revealed that SMK11 serves as an accessory assembly factor required for the normal assembly of subunits into complex IV, which will accelerate the elucidation of the assembly of complex IV in plant mitochondria.


Asunto(s)
Zea mays , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo
2.
J Surg Res ; 295: 457-467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070260

RESUMEN

INTRODUCTION: Our previous research demonstrated that CD8+ cell density profiling using a hexagonal grid-based digital image analysis method provides predictors of patient outcomes after liver resection due to hepatocellular carcinoma (HCC). Continuing our study, we have further investigated the applicability of the methodology to patients receiving a liver transplant for HCC. METHODS: The retrospective study enrolled patients with HCC who underwent liver transplantation (LT) at the Vilnius University Hospital Santaros Clinics between 2007 and 2020. We determined the density profiles of CD8+ lymphocytes at the interface between HCC and stroma and the interface between the perineoplastic liver parenchyma and stroma. Both digital image analysis and the hexagonal grid-based immunogradient method were applied to CD8+ immunohistochemistry images. Survival statistics based on clinicopathological, peripheral blood analysis, and surgical data determined the prognostic value of these indicators. RESULTS: Univariate clinicopathological predictors of worse OS after LT included: patient's age at the time of the transplantation, a higher number of HCC nodules, lower platelet count, longer activated thromboplastin time, lower serum albumin, higher serum total bilirubin, and lower serum creatinine levels. The two independent predictors of overall survival were mean CD8+ cell density at the epithelial edge of the explanted liver parenchyma-stroma interface and peripheral blood platelet count. CONCLUSIONS: Our model discloses that preoperative peripheral blood platelet count and mean CD8+ cell density at the epithelial edge of nonmalignant interface in the explanted liver parenchyma are independent predictors of OS for HCC after LT.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Estudios Retrospectivos , Microambiente Tumoral , Linfocitos , Pronóstico , Recurrencia Local de Neoplasia
3.
Plant Cell ; 32(3): 573-594, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911454

RESUMEN

Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.


Asunto(s)
Mitocondrias/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Germinación , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción
4.
Plant J ; 108(4): 912-959, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528296

RESUMEN

The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.


Asunto(s)
ADN de Plantas/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , ADN Mitocondrial/genética , Lípidos/análisis , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plantas/ultraestructura , Proteómica , Transducción de Señal
5.
Am J Pathol ; 191(10): 1724-1731, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33895120

RESUMEN

Assessment of intratumoral heterogeneity and tumor-host interaction within the tumor microenvironment is becoming increasingly important for innovative cancer therapy decisions because of the unique information it can generate about the state of the disease. However, its assessment and quantification are limited by ambiguous definitions of the tumor-host interface and by human cognitive capacity in current pathology practice. Advances in machine learning and artificial intelligence have opened the field of digital pathology to novel tissue image analytics and feature extraction for generation of high-capacity computational disease management models. A particular benefit is expected from machine-learning applications that can perform extraction and quantification of subvisual features of both intratumoral heterogeneity and tumor microenvironment aspects. These methods generate information about cancer cell subpopulation heterogeneity, potential tumor-host interactions, and tissue microarchitecture, derived from morphologically resolved content using both explicit and implicit features. Several studies have achieved promising diagnostic, prognostic, and predictive artificial intelligence models that often outperform current clinical and pathology criteria. However, further effort is needed for clinical adoption of such methods through development of standardizable high-capacity workflows and proper validation studies.


Asunto(s)
Aprendizaje Automático , Neoplasias/patología , Guías de Práctica Clínica como Asunto , Humanos , Modelos Teóricos , Células del Estroma/patología , Microambiente Tumoral/inmunología
6.
Am J Pathol ; 190(6): 1309-1322, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194048

RESUMEN

The distribution of tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment provides strong prognostic value, which is increasingly important with the arrival of new immunotherapy modalities. Both visual and image analysis-based assays are developed to assess the immune contexture of the tumors. We propose an automated method based on grid subsampling of microscopy image analysis data to extract the tumor-stroma interface zone (IZ) of controlled width. The IZ is a ranking of tissue areas by their distance to the tumor edge, which is determined by a set of explicit rules. TIL density profiles across the IZ are used to compute a set of novel immunogradient indicators that reflect TIL gradient towards the tumor. We applied this method on CD8 immunohistochemistry images of surgically excised hormone receptor-positive breast and colorectal cancers to predict overall patient survival. In both cohorts, the immunogradient indicators enabled strong and independent prognostic stratification, outperforming clinical and pathologic variables. Patients with breast cancer with low immunogradient levels had a prominent decrease in survival probability 5 years after surgery. Our study provides proof of concept that data-driven, automated, operator-independent IZ sampling enables spatial immune response measurement in the tumor-host interaction frontline for prediction of disease outcomes.


Asunto(s)
Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/patología , Linfocitos Infiltrantes de Tumor/inmunología , Microambiente Tumoral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias Colorrectales/inmunología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico
7.
J Exp Bot ; 72(20): 6933-6948, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34279607

RESUMEN

Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.


Asunto(s)
Proteínas Mitocondriales , Zea mays , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Empalme del ARN , Semillas/genética , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo
8.
BMC Plant Biol ; 18(1): 165, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097019

RESUMEN

BACKGROUND: Trichoderma fungi live in the soil rhizosphere and are beneficial for plant growth and pathogen resistance. Several species and strains are currently used worldwide in co-cultivation with crops as a biocontrol alternative to chemical pesticides even though little is known about the exact mechanisms of the beneficial interaction. We earlier found alamethicin, a peptide antibiotic secreted by Trichoderma, to efficiently permeabilise cultured tobacco cells. However, pre-treatment with Trichoderma cellulase made the cells resistant to subsequent alamethicin, suggesting a potential mechanism for plant tolerance to Trichoderma, needed for mutualistic symbiosis. RESULTS: We here investigated intact sterile-grown Arabidopsis thaliana seedlings germinated in water or growth medium. These could be permeabilised by alamethicin but not if pretreated with cellulase. By following the fluorescence from the membrane-impermeable DNA-binding probe propidium iodide, we found alamethicin to mainly permeabilise root tips, especially the apical meristem and epidermis cells, but not the root cap and basal meristem cells nor cortex cells. Alamethicin permeabilisation and cellulase-induced resistance were confirmed by developing a quantitative in situ assay based on NADP-isocitrate dehydrogenase accessibility. The combined assays also showed that hyperosmotic treatment after the cellulase pretreatment abolished the induced cellulase resistance. CONCLUSION: We here conclude the presence of cell-specific alamethicin permeabilisation, and cellulase-induced resistance to it, in root tip apical meristem and epidermis of the model organism A. thaliana. We suggest that contact between the plasma membrane and the cell wall is needed for the resistance to remain. Our results indicate a potential mode for the plant to avoid negative effects of alamethicin on plant growth and localises the point of potential damage and response. The results also open up for identification of plant genetic components essential for beneficial effects from Trichoderma on plants.


Asunto(s)
Alameticina/farmacología , Antibacterianos/farmacología , Arabidopsis/efectos de los fármacos , Celulasa/farmacología , Meristema/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Trichoderma/química , Alameticina/antagonistas & inhibidores , Permeabilidad/efectos de los fármacos , Plantones/efectos de los fármacos
9.
Int J Mol Sci ; 19(5)2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747392

RESUMEN

Environmental stresses, including ammonium (NH4⁺) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4⁺-fed plants. Most plant species grown with NH4⁺ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4⁺ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4⁺. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4⁺ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4⁺-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.


Asunto(s)
Compuestos de Amonio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Glutatión/metabolismo , NADPH Deshidrogenasa/metabolismo , Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Respiración de la Célula/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Nitratos/farmacología , Nucleótidos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Piridinas , Especies Reactivas de Oxígeno/metabolismo
10.
J Biol Chem ; 291(48): 25066-25076, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27758859

RESUMEN

Glycero-3-phosphocholine (GPC), the product of the complete deacylation of phosphatidylcholine (PC), was long thought to not be a substrate for reacylation. However, it was recently shown that cell-free extracts from yeast and plants could acylate GPC with acyl groups from acyl-CoA. By screening enzyme activities of extracts derived from a yeast knock-out collection, we were able to identify and clone the yeast gene (GPC1) encoding the enzyme, named glycerophosphocholine acyltransferase (GPCAT). By homology search, we also identified and cloned GPCAT genes from three plant species. All enzymes utilize acyl-CoA to acylate GPC, forming lyso-PC, and they show broad acyl specificities in both yeast and plants. In addition to acyl-CoA, GPCAT efficiently utilizes LPC and lysophosphatidylethanolamine as acyl donors in the acylation of GPC. GPCAT homologues were found in the major eukaryotic organism groups but not in prokaryotes or chordates. The enzyme forms its own protein family and does not contain any of the acyl binding or lipase motifs that are present in other studied acyltransferases and transacylases. In vivo labeling studies confirm a role for Gpc1p in PC biosynthesis in yeast. It is postulated that GPCATs contribute to the maintenance of PC homeostasis and also have specific functions in acyl editing of PC (e.g. in transferring acyl groups modified at the sn-2 position of PC to the sn-1 position of this molecule in plant cells).


Asunto(s)
Aciltransferasas/metabolismo , Fosfatidilcolinas/biosíntesis , Proteínas de Plantas/metabolismo , Plantas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Acilación , Aciltransferasas/genética , Fosfatidilcolinas/genética , Proteínas de Plantas/genética , Plantas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Plant Physiol ; 170(2): 989-99, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662603

RESUMEN

Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between "long-root" cytokinin-deficient plants and "long-root" glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension).


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Nitratos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Compuestos de Amonio/farmacología , Arabidopsis/efectos de los fármacos , Citocininas/metabolismo , Epistasis Genética/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos
12.
Physiol Plant ; 160(1): 65-83, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28008622

RESUMEN

Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2 O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.


Asunto(s)
Compuestos de Amonio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitratos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Physiol Plant ; 157(3): 338-51, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27079180

RESUMEN

Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family.


Asunto(s)
Arabidopsis/enzimología , Modelos Moleculares , NADH NADPH Oxidorreductasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , NAD/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Filogenia , Especificidad por Sustrato
14.
Plant Cell Environ ; 38(1): 224-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25040883

RESUMEN

Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NADH Deshidrogenasa/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Respiración de la Célula , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Homeostasis , Concentración de Iones de Hidrógeno , Metaboloma , Mitocondrias/metabolismo , Mutación , NADH Deshidrogenasa/genética , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Especies Reactivas de Oxígeno/metabolismo
15.
Plant Cell Physiol ; 55(5): 881-96, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24486764

RESUMEN

The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , FMN Reductasa/genética , Proteínas Mitocondriales/genética , NADH NADPH Oxidorreductasas/genética , Interferencia de ARN , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Western Blotting , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de la radiación , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , FMN Reductasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rotenona/farmacología , Homología de Secuencia de Ácido Nucleico , Técnicas de Cultivo de Tejidos , Transcriptoma/efectos de los fármacos , Transcriptoma/efectos de la radiación , Desacopladores/farmacología
16.
Sci Rep ; 14(1): 5345, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438513

RESUMEN

Managing patients with kidney allografts largely depends on biopsy diagnosis which is based on semiquantitative assessments of rejection features and extent of acute and chronic changes within the renal parenchyma. Current methods lack reproducibility while digital image data-driven computational models enable comprehensive and quantitative assays. In this study we aimed to develop a computational method for automated assessment of histopathology transformations within the tubulointerstitial compartment of the renal cortex. Whole slide images of modified Picrosirius red-stained biopsy slides were used for the training (n = 852) and both internal (n = 172) and external (n = 94) tests datasets. The pipeline utilizes deep learning segmentations of renal tubules, interstitium, and peritubular capillaries from which morphometry features were extracted. Seven indicators were selected for exploring the intrinsic spatial interactions within the tubulointerstitial compartment. A principal component analysis revealed two independent factors which can be interpreted as representing chronic and acute tubulointerstitial injury. A K-means clustering classified biopsies according to potential phenotypes of combined acute and chronic transformations of various degrees. We conclude that multivariate analyses of tubulointerstitial morphometry transformations enable extraction of and quantification of acute and chronic components of injury. The method is developed for renal allograft biopsies; however, the principle can be applied more broadly for kidney pathology assessment.


Asunto(s)
Trasplante de Riñón , Humanos , Reproducibilidad de los Resultados , Riñón , Biopsia , Aloinjertos
17.
Virchows Arch ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217716

RESUMEN

In breast cancer (BC), pathologists visually score ER, PR, HER2, and Ki67 biomarkers to assess tumor properties and predict patient outcomes. This does not systematically account for intratumoral heterogeneity (ITH) which has been reported to provide prognostic value. This study utilized digital image analysis (DIA) and computational pathology methods to investigate the prognostic value of ITH indicators in ER-positive (ER+) HER2-negative (HER2-) BC patients. Whole slide images (WSIs) of surgically excised specimens stained for ER, PR, Ki67, and HER2 from 254 patients were used. DIA with tumor tissue segmentation and detection of biomarker-positive cells was performed. The DIA-generated data were subsampled by a hexagonal grid to compute Haralick's texture indicators for ER, PR, and Ki67. Cox regression analyses were performed to assess the prognostic significance of the immunohistochemistry (IHC) and ITH indicators in the context of clinicopathologic variables. In multivariable analysis, the ITH of Ki67-positive cells, measured by Haralick's texture entropy, emerged as an independent predictor of worse BC-specific survival (BCSS) (hazard ratio (HR) = 2.64, p-value = 0.0049), along with lymph node involvement (HR = 2.26, p-value = 0.0195). Remarkably, the entropy representing the spatial disarrangement of tumor proliferation outperformed the proliferation rate per se established either by pathology reports or DIA. We conclude that the Ki67 entropy indicator enables a more comprehensive risk assessment with regard to BCSS, especially in cases with borderline Ki67 proliferation rates. The study further demonstrates the benefits of high-capacity DIA-generated data for quantifying the essentially subvisual ITH properties.

18.
Curr Biol ; 34(2): 327-342.e4, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38176418

RESUMEN

Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo
19.
Plant Cell Environ ; 36(11): 2034-45, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23574048

RESUMEN

Ammonium nutrition has been suggested to be associated with alterations in the oxidation-reduction state of leaf cells. Herein, we show that ammonium nutrition in Arabidopsis thaliana increases leaf NAD(P)H/NAD(P)(+) ratio, reactive oxygen species content and accumulation of biomolecules oxidized by free radicals. We used the method of rapid fractionation of protoplasts to analyse which cellular compartments were over-reduced under ammonium supply and revealed that observed changes in NAD(P)H/NAD(P)(+) ratio involved only the extrachloroplastic fraction. We also showed that ammonium nutrition changes mitochondrial electron transport chain activity, increasing mitochondrial reactive oxygen species production. Our results indicate that the functional impairment associated with ammonium nutrition is mainly associated with redox reactions outside the chloroplast.


Asunto(s)
Compuestos de Amonio/farmacología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mitocondrias/metabolismo , NADP/metabolismo , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Respiración de la Célula/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Cloroplastos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Nitratos/farmacología , Oxidación-Reducción/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
20.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831546

RESUMEN

BACKGROUND: Bacille Calmette-Guerin (BCG) immunotherapy is the first-line treatment in patients with high-risk non-muscle invasive papillary urothelial carcinoma (NMIPUC), the most common type of bladder cancer. The therapy outcomes are variable and may depend on the immune response within the tumor microenvironment. In our study, we explored the prognostic value of CD8+ cell density gradient indicators across the tumor epithelium-stroma interface of NMIPUC. METHODS: Clinical and pathologic data were retrospectively collected from 157 NMIPUC patients treated with BCG immunotherapy after transurethral resection. Whole-slide digital image analysis of CD8 immunohistochemistry slides was used for tissue segmentation, CD8+ cell quantification, and the assessment of CD8+ cell densities within the epithelium-stroma interface. Subsequently, the gradient indicators (center of mass and immunodrop) were computed to represent the density gradient across the interface. RESULTS: By univariable analysis of the clinicopathologic factors, including the history of previous NMIPUC, poor tumor differentiation, and pT1 stage, were associated with shorter RFS (p < 0.05). In CD8+ analyses, only the gradient indicators but not the absolute CD8+ densities were predictive for RFS (p < 0.05). The best-performing cross-validated model included previous episodes of NMIPUC (HR = 4.4492, p = 0.0063), poor differentiation (HR = 2.3672, p = 0.0457), and immunodrop (HR = 5.5072, p = 0.0455). CONCLUSIONS: We found that gradient indicators of CD8+ cell densities across the tumor epithelium-stroma interface, along with routine clinical and pathology data, improve the prediction of RFS in NMIPUC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA