Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bone ; 188: 117223, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39111379

RESUMEN

Tartrate-resistant acid phosphatase (TRAP) serum levels reflect osteoclast number, bone remodeling activity, and fracture risk. Deletion or loss of function of TRAP results in short stature in mice and man. Yet, the impact and mechanisms of TRAP for the site- and sex-specific development of bone and cartilage is not well understood. Here, we use a global TRAP knockout (TRAPKO) and wildtype littermate control (WT) mice of both sexes to investigate TRAP as a possible sex- and site-specific regulator of bone and growth plate development. TRAPKO mice of both sexes weighed less and had shorter tibial length than their WT, features that were more accentuated in male than female TRAPKO mice. These changes were not associated with a general reduction in growth as not all organs displayed a proportionally lower mass, and serum IGF-1 was unchanged. Using µCT and site-specificity analysis of the cortical bone revealed wider proximal tibia, a higher trabecular thickness, and lower trabecular separation in male TRAPKO compared to WT mice, an effect not seen in female mice. Histomorphometric analysis revealed that the growth plate height as well as height of terminal hypertrophic chondrocytes were markedly increased, and the number of columns was decreased in TRAPKO mice of both sexes. These effects were more accentuated in female mice. Proliferation and differentiation of bone marrow derived macrophages into osteoclasts, as well as C-terminal cross links were normal in TRAPKO mice of both sexes. Collectively, our results show that TRAP regulates bone and cartilage development in a sex-and site-specific manner in mice.


Asunto(s)
Hueso Esponjoso , Hueso Cortical , Placa de Crecimiento , Ratones Noqueados , Caracteres Sexuales , Fosfatasa Ácida Tartratorresistente , Animales , Fosfatasa Ácida Tartratorresistente/metabolismo , Femenino , Masculino , Ratones , Osteoclastos/metabolismo , Tamaño de los Órganos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Tibia/metabolismo , Microtomografía por Rayos X , Ratones Endogámicos C57BL
2.
Adv Sci (Weinh) ; 9(28): e2202552, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35957513

RESUMEN

Fibrillar collagens promote cell proliferation, migration, and survival in various epithelial cancers and are generally associated with tumor aggressiveness. However, the impact of fibrillar collagens on soft tissue sarcoma behavior remains poorly understood. Unexpectedly, this study finds that fibrillar collagen-related gene expression is associated with favorable patient prognosis in rhabdomyosarcoma. By developing and using collagen matrices with distinct stiffness and in vivo-like microarchitectures, this study uncovers that the activation of DDR1 has pro-apoptotic and of integrin ß1 pro-survival function, specifically in 3D rhabdomyosarcoma cell cultures. It demonstrates that rhabdomyosarcoma cell-intrinsic or extrinsic matrix remodeling promotes cell survival. Mechanistically, the 3D-specific collagen-induced apoptosis results from a dual DDR1-independent and a synergistic DDR1-dependent TRPV4-mediated response to mechanical confinement. Altogether, these results indicate that dense microfibrillar collagen-rich microenvironments are detrimental to rhabdomyosarcoma cells through an apoptotic response orchestrated by the induction of DDR1 signaling and mechanical confinement. This mechanism helps to explain the preference of rhabdomyosarcoma cells to grow in and metastasize to low fibrillar collagen microenvironments such as the lung.


Asunto(s)
Receptor con Dominio Discoidina 1 , Rabdomiosarcoma , Canales Catiónicos TRPV , Apoptosis , Colágeno , Receptor con Dominio Discoidina 1/genética , Receptor con Dominio Discoidina 1/metabolismo , Colágenos Fibrilares/metabolismo , Humanos , Integrina beta1/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA