Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 13(4): 2542-2553, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519276

RESUMEN

Optical coherence tomography (OCT) has become an important tool for measuring the vibratory response of the living cochlea. It stands alone in its capacity to measure the intricate motion of the hearing organ through the surrounding otic capsule bone. Nevertheless, as an extension of phase-sensitive OCT, it is only capable of measuring motion along the optical axis. Hence, measurements are 1-D. To overcome this limitation and provide a measure of the 3-D vector of motion in the cochlea, we developed an OCT system with three sample arms in a single interferometer. Taking advantage of the long coherence length of our swept laser, we depth (frequency) encode the three channels. An algorithm to depth decode and coregister the three channels is followed by a coordinate transformation that takes the vibrational data from the experimental coordinate system to Cartesian or spherical polar coordinates. The system was validated using a piezo as a known vibrating element that could be positioned at various angles. The angular measurement on the piezo was shown to have an RMSE of ≤ 0.30° (5.2 mrad) with a standard deviation of the amplitude of ≤ 120 pm. Finally, we demonstrate the system for in vivo imaging by measuring the vector of motion over a volume image in the apex of the mouse cochlea.

2.
Biomed Opt Express ; 12(8): 5196-5213, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513251

RESUMEN

We describe an optical coherence tomography and vibrometry system designed for portable hand-held usage in the otology clinic on awake patients. The system provides clinically relevant point-of-care morphological imaging with 14-44 µm resolution and functional vibratory measures with sub-nanometer sensitivity. We evaluated various new approaches for extracting functional information including a multi-tone stimulus, a continuous chirp stimulus, and alternating air and bone stimulus. We also explored the vibratory response over an area of the tympanic membrane (TM) and generated TM thickness maps. Our results suggest that the system can provide real-time in vivo imaging and vibrometry of the ear and could prove useful for investigating otologic pathology in the clinic setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA